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A Quick Survey
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Java JavaScript Both
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What languages do you use?
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Server Java Applets JS in Browser Node.js Rhino Nashorn Avatar.js
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What runtimes do you use for them?
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Chris Bailey
STSM, IBM Runtime Monitoring and Diagnostics Architect

-14 years working with Java and JVM technologies
-1  year working with Node.js and V8
-6 months working with Ruby and Python

Recent work focus:
-Java monitoring, diagnostics and troubleshooting
-Java integration into the cloud
-JavaScript monitoring, diagnostics and troubleshooting

My contact information:
-baileyc@uk.ibm.com
-http://www.linkedin.com/in/chrisbaileyibm
-http://www.slideshare.net/cnbailey/
-@Chris__Bailey

Introduction to the Speakers

mailto:baileyc@uk.ibm.com
http://www.linkedin.com/in/chrisbaileyibm
http://www.slideshare.net/cnbailey/
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Language Adoption

Deployment Modes

Asynchronous IO

WebApplication Performance

Under the Hood

Enterprise Deployments

IBM and Node.js

Agenda
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Language Adoption
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GitHub Adoption: Java
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GitHub Adoption: JavaScript
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modulecounts.com
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StackOverflow User Survey
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Ratings based on the number of skilled engineers, courses and third party vendors.

Tiobe Community Programming Index
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Indeed.com Job Trends: Java
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Indeed.com Job Trends: JavaScript
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Indeed.com Job Trends
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JavaScript has a large developer base
-#1 on GitHub with 45% more active repositories than Java
-#1 on modulecounts.com with 29% more NPM modules than 
Maven
-#1 used language by StackOverflow survey responders
-#6 language on the Tiobe index

Java remains hugely relevant, particularly on the server
-#2 on GitHub with 52% more active repositories than the next 
language
-#3 on modulecounts with 73.8% more modules than the next 
language
-#2 language on the Tiobe index
-#1 on indeed.com for developer jobs

Language Adoption
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Deployment Modes
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JavaScript is ubiquitous in the browser
-Supported in every browser

-Full integration with HTML and CSS

JavaScript is not affected by negative publicity....

Unless it is absolutely necessary to run Java in web browsers, disable it as described
below, even after updating to 7u11. This will help mitigate other Java vulnerabilities that
may be discovered in the future.

This and previous Java vulnerabilities have been widely targeted by attackers, and 
new Java vulnerabilities are likely to be discovered. To defend against this and future
Java vulnerabilities, consider disabling Java in web browsers…

Usage in the browser
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Java has a long history on the server
-JPE launched in 1998

Java has rich platform support:
-Linux x86, Linux POWER, zLinux

-Windows, Mac OS, Solaris, AIX, z/OS

JavaScript is a nascent language on the server
-Limited platform support – although its growing
-No API support to interact with the OS
Part of the browser security model
-Frameworks like Node.js have changed that.

Usage on the server
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Single Threaded Event based JavaScript framework
–Uses non-blocking asynchronous I/O

Wraps the Chrome V8 JavaScript engine with I/O interfaces

–Libuv provides interaction with OS/system

Designed to build scalable network applications
–Suited for real time delivery of data to distributed client

Available on a growing set of platforms
-Windows, Linux x86, Linux ARM, Mac OS, Solaris
-Linux POWER, zLinux, AIX

libuvV8

Node Bindings

Node Standard Library

C

JavaScript

Server Side JavaScript: Node.js
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Async I/O Model
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One thread (or process) per connection
-Each thread waits on a response
-Scalability determined by the number of 
threads

Each thread:
-consumes memory
-is relatively idle

Number of concurrent customers 
determined by number of depot workers

Additional customers wait in a queue with 
no response

Typical approach to I/O
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One thread multiplexes for multiple 
requests
-No waiting for a response
-Handles return from I/O when notified

Scalability determined by:
-CPU usage
-“Back end” responsiveness

Number of concurrent customers 
determined by how fast the food 
Server can work

Or until the kitchen gets slammed

Asycnhronous Non-Blocking I/O
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Tasks must execute quickly to avoid blocking the event queue
-Analogous to work done under a lock
-Stick to the right jobs, eg, I/O
-Delegate CPU bound tasks to back end processes

Easy to run out of memory
-No direct bound on amount of parallel work
-Holding state for each piece or work means unbounded memory 
usage

Drawbacks of Asynchronous I/O
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JavaScript is already event based in the browser
-eg. onClick and onMouseOver events

First class functions and closures fit well with events
-Easy to create and pass function callbacks
-Easy to execute callbacks in the context of the event

Node.js execution is based on an event loop
-Asynchronous I/O built in from the ground up

Node.js execution uses a single thread
-No need to worry about locking or shared data
-Most machines are now multi-CPU, so cluster capabilities are 
provided

JavaScript and Asynchronous I/O



26

var cluster = require('cluster');

var cpus = require('os').cpus().length;

var http = require('http');

if (cluster.isMaster) {

for (var i = 0; i < cpus; i++) {

cluster.fork();

}

cluster.on('death', function(worker) {

console.log("Worker" + worker.pid + "died");

});

} else {

http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World!\n");

response.end();

}).listen(8080);

}

HTTP Server Example



27

var cluster = require('cluster');

var cpus = require('os').cpus().length;

var http = require('http');

if (cluster.isMaster) {

for (var i = 0; i < cpus; i++) {

cluster.fork();

}

cluster.on('death', function(worker) {

console.log("Worker" + worker.pid + "died");

});

} else {

http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World!\n");

response.end();

}).listen(8080);

}

HTTP Server Example with Clustering
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Very little time spent with events on the Event Loop

Provides good scalability, so should provide great performance for 
IO bound apps

Like WebApplications...

JavaScript and Asynchronous I/O
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WebApp Performance
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JSON serialization of a 
newly instantiated object

Maps
-Key of message
-Value of Hello, World!

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

JSON Serialization
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JSON serialization of a 
newly instantiated object

Maps
-Key of message
-Value of Hello, World!

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

JSON Serialization

JavaScript

Java
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JavaScript WebApp Performance
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Fetches single row from 
simple database table

Row serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Single Query
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Fetches single row from 
simple database table

Row serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Single Query

JavaScript

Java
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JavaScript WebApp Performance
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Fetches multiple rows 
from a simple database 
table

Rows serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Multiple Queries
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Fetches multiple rows 
from a simple database 
table

Rows serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Multiple Queries

JavaScript

Java
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JavaScript WebApp Performance
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Fetches multiple rows 
from a simple database 
table

Converts rows to objects 
and modifies one attribute 
of each object

Updates each associated 
row and serializes as 
JSON

Example Response:

Data Updates

Results from TechEmpower.com Round 9 tests (2014-05-01)
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Fetches multiple rows 
from a simple database 
table

Converts rows to objects 
and modifies one attribute 
of each object

Updates each associated 
row and serializes as 
JSON

Example Response:

Data Updates

Results from TechEmpower.com Round 9 tests (2014-05-01)

JavaScript

Java
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JavaScript WebApp Performance
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Computation speed is (much) slower than Java

I/O speed is higher than Java

JavaScript WebApp Performance
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Under the Hood
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Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

10

Integer Object

Field Table

Constant Pool

Object Offsets

...

Integer Class

Java objects are fixed in size and shape

●Values associated with objects are fixed and typed (known what and where it is)

Methods associated with objects are fixed and typed (parameters and return types)

Object Representation: Java

name

Method Table

Super Class
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Object Representation: JavaScript

JavaScript objects are dynamic in size and shape

Values associated with objects are dynamic and un-typed

Methods associated with objects are dynamic and un-typed

–32 “slots” exist for method and values with overflow arrays if this is not enough

–Every “slot” is 64bits as any type of data could be stored there

Map

Elements

Extra Props

1:     10

JSObject

2: intValue()

3:

32:

Map

value: 1

Map

1:                   

Length

2:                   

Fixed Array

Map

1:                   

Length

2:                   

Fixed Array

intValue(): 2
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Object Representation: JavaScript

Order in which methods and fields are added matters

Objects are equivalent and equal, but have different Maps and layouts

Map

Elements

Extra Props

1:     10

JSObject

2: intValue()

3:

32:

Map A

value: 1

Map

1:                   

Length

2:                   

Fixed Array

Map

1:                   

Length

2:                   

Fixed Array

intValue(): 2

Map

Elements

Extra Props

1: intValue()

JSObject

2:      10       

3:

32:

Map B

value: 2

Map

1:                   

Length

2:                   

Fixed Array

Map

1:                   

Length

2:                   

Fixed Array

intValue(): 1
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Functions are stored in JavaScript objects as fields

–No fixed set of methods for an object

Objects are not typed, so data much be checked to determine how to handle it

eg. the '+' operator:

•number + number → addition

•string involved? → concatenation

•objects involved? → convert to primitives then addition or 

concatenation

eg. property load:

•Load prototype object

•Load getter method

•Load callback function

Therefore not possible to determine what instructions to use just from the source code

JIT Compilation
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JavaScript

on the JVM?
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Nashorn and Avatar.js

Nashorn JavaScript engine delivered in JDK8

–Utilizes new JVM level features 

for performance

Avatar.js provides Node.js support on Nashorn

Results of “Octane” JavaScript benchmark*:

–Node.js is 4.8x faster

–Avatar.js is >10x larger

* Using Java 8 pre-u20
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Nashorn and Avatar.js

Nashorn JavaScript engine delivered in JDK8

–Utilizes new JVM level features 

for performance

Avatar.js provides Node.js support on Nashorn

Results of “Octane” JavaScript benchmark*:

–Node.js is 4.8x faster

–Avatar.js is >10x larger

* Using Java 8 pre-u40

Feb 12th, 2015: Avatar is “put on hold”
https://blogs.oracle.com/theaquarium/entry/project_avatar_update

https://blogs.oracle.com/theaquarium/entry/project_avatar_update
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Enterprise

Deployments
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The PayPal

Story
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2013: PayPal evaluates use of  
Node.js for “Account Overview”
–Implementation done in both Java 
and Node.js to compare

Node.js implementation
–50% less development effort

–33% fewer lines of code

–40% fewer files

–~35% faster request response

Note: legacy Java frameworks 
involved.....

PayPal and “Account Overview” Project
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The WalMart

Story
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2013: Eran Hammer (WalMart) discovers 200+MB/day leak
– Increasing memory usage at 200+MB/day per server

Application improvements by Eran reduces leak to 8MB/day
– Lots of progress made

– But required months of investigation effort

 Identified remaining leak related to HTTP Client Requests

– Unable to make further progress....

 Node.js runtime development team required to resolve issue

– 5 core runtime developers/engineers

– 3 weeks of effort

WalMart experiences Node.js memory leak
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IBM and

Node.js
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Node.js Foundation Founding Member
– Alongside Joyent, Linux Foundation, Microsoft, PayPal and Fidelity

IBM SDK for Node.js v1.2
– Open source ports of Google V8 JavaScript engine

• Support for POWER and zLinux

– Runtimes available for all platforms to provide consistency

• AIX, Linux (Intel, POWER, System z, Windows, Mac OS X)

– http://www.ibm.com/developerworks/web/nodesdk/

● IBM Monitoring and Diagnostics Tools

– Live monitoring: Health Center

– GC log analysis: GCMV

– Dump analysis: IDDE

IBM and Node.js

http://www.ibm.com/developerworks/web/nodesdk/
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JavaScript has a large amount of interest and is growing
–Web applications with code sharing between server and browser

–Async IO and event loop makes it easy to write scalable applications

–Rich set of APIs available via the npm module ecosystem

Dynamic nature makes development easier, but introduces 
challenges

–Errors typically found during compilation are found at runtime

–JIT compilation loves certainty, which is removed

Additional “enterprise-grade” capabilities needed

– Monitoring/Diagnostics, Security, Internationalization, etc

– IBM contributing via the newly announce Node Foundation

Summary
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