
© 2015 IBM Corporation

Java vs JavaScript for
Enterprise Web Applications

Chris Bailey: STSM, IBM Runtime Monitoring

2

A Quick Survey

3

Java JavaScript Both

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

er
ce

n
ta

ge
 o

f
A

u
d

ie
n

ce

What languages do you use?

4

Server Java Applets JS in Browser Node.js Rhino Nashorn Avatar.js

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

er
ce

n
ta

ge
 o

f
A

u
d

ie
n

ce

What runtimes do you use for them?

5

Chris Bailey
STSM, IBM Runtime Monitoring and Diagnostics Architect

-14 years working with Java and JVM technologies
-1 year working with Node.js and V8
-6 months working with Ruby and Python

Recent work focus:
-Java monitoring, diagnostics and troubleshooting
-Java integration into the cloud
-JavaScript monitoring, diagnostics and troubleshooting

My contact information:
-baileyc@uk.ibm.com
-http://www.linkedin.com/in/chrisbaileyibm
-http://www.slideshare.net/cnbailey/
-@Chris__Bailey

Introduction to the Speakers

mailto:baileyc@uk.ibm.com
http://www.linkedin.com/in/chrisbaileyibm
http://www.slideshare.net/cnbailey/

6

Language Adoption

Deployment Modes

Asynchronous IO

WebApplication Performance

Under the Hood

Enterprise Deployments

IBM and Node.js

Agenda

7

Language Adoption

8

GitHub Adoption: Java

9

GitHub Adoption: JavaScript

10

modulecounts.com

11

StackOverflow User Survey

12

Ratings based on the number of skilled engineers, courses and third party vendors.

Tiobe Community Programming Index

13

Indeed.com Job Trends: Java

14

Indeed.com Job Trends: JavaScript

15

Indeed.com Job Trends

16

JavaScript has a large developer base
-#1 on GitHub with 45% more active repositories than Java
-#1 on modulecounts.com with 29% more NPM modules than
Maven
-#1 used language by StackOverflow survey responders
-#6 language on the Tiobe index

Java remains hugely relevant, particularly on the server
-#2 on GitHub with 52% more active repositories than the next
language
-#3 on modulecounts with 73.8% more modules than the next
language
-#2 language on the Tiobe index
-#1 on indeed.com for developer jobs

Language Adoption

17

Deployment Modes

18

JavaScript is ubiquitous in the browser
-Supported in every browser

-Full integration with HTML and CSS

JavaScript is not affected by negative publicity....

Unless it is absolutely necessary to run Java in web browsers, disable it as described
below, even after updating to 7u11. This will help mitigate other Java vulnerabilities that
may be discovered in the future.

This and previous Java vulnerabilities have been widely targeted by attackers, and
new Java vulnerabilities are likely to be discovered. To defend against this and future
Java vulnerabilities, consider disabling Java in web browsers…

Usage in the browser

19

Java has a long history on the server
-JPE launched in 1998

Java has rich platform support:
-Linux x86, Linux POWER, zLinux

-Windows, Mac OS, Solaris, AIX, z/OS

JavaScript is a nascent language on the server
-Limited platform support – although its growing
-No API support to interact with the OS
Part of the browser security model
-Frameworks like Node.js have changed that.

Usage on the server

20

Single Threaded Event based JavaScript framework
–Uses non-blocking asynchronous I/O

Wraps the Chrome V8 JavaScript engine with I/O interfaces

–Libuv provides interaction with OS/system

Designed to build scalable network applications
–Suited for real time delivery of data to distributed client

Available on a growing set of platforms
-Windows, Linux x86, Linux ARM, Mac OS, Solaris
-Linux POWER, zLinux, AIX

libuvV8

Node Bindings

Node Standard Library

C

JavaScript

Server Side JavaScript: Node.js

21

Async I/O Model

22

One thread (or process) per connection
-Each thread waits on a response
-Scalability determined by the number of
threads

Each thread:
-consumes memory
-is relatively idle

Number of concurrent customers
determined by number of depot workers

Additional customers wait in a queue with
no response

Typical approach to I/O

23

One thread multiplexes for multiple
requests
-No waiting for a response
-Handles return from I/O when notified

Scalability determined by:
-CPU usage
-“Back end” responsiveness

Number of concurrent customers
determined by how fast the food
Server can work

Or until the kitchen gets slammed

Asycnhronous Non-Blocking I/O

24

Tasks must execute quickly to avoid blocking the event queue
-Analogous to work done under a lock
-Stick to the right jobs, eg, I/O
-Delegate CPU bound tasks to back end processes

Easy to run out of memory
-No direct bound on amount of parallel work
-Holding state for each piece or work means unbounded memory
usage

Drawbacks of Asynchronous I/O

25

JavaScript is already event based in the browser
-eg. onClick and onMouseOver events

First class functions and closures fit well with events
-Easy to create and pass function callbacks
-Easy to execute callbacks in the context of the event

Node.js execution is based on an event loop
-Asynchronous I/O built in from the ground up

Node.js execution uses a single thread
-No need to worry about locking or shared data
-Most machines are now multi-CPU, so cluster capabilities are
provided

JavaScript and Asynchronous I/O

26

var cluster = require('cluster');

var cpus = require('os').cpus().length;

var http = require('http');

if (cluster.isMaster) {

for (var i = 0; i < cpus; i++) {

cluster.fork();

}

cluster.on('death', function(worker) {

console.log("Worker" + worker.pid + "died");

});

} else {

http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World!\n");

response.end();

}).listen(8080);

}

HTTP Server Example

27

var cluster = require('cluster');

var cpus = require('os').cpus().length;

var http = require('http');

if (cluster.isMaster) {

for (var i = 0; i < cpus; i++) {

cluster.fork();

}

cluster.on('death', function(worker) {

console.log("Worker" + worker.pid + "died");

});

} else {

http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World!\n");

response.end();

}).listen(8080);

}

HTTP Server Example with Clustering

28

Very little time spent with events on the Event Loop

Provides good scalability, so should provide great performance for
IO bound apps

Like WebApplications...

JavaScript and Asynchronous I/O

29

WebApp Performance

30

JSON serialization of a
newly instantiated object

Maps
-Key of message
-Value of Hello, World!

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

JSON Serialization

31

JSON serialization of a
newly instantiated object

Maps
-Key of message
-Value of Hello, World!

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

JSON Serialization

JavaScript

Java

32

JavaScript WebApp Performance

-75

-100

-80

-60

-40

-20

0

20

40
%

ag
e

o
f

Ja
va

 P
er

fo
rm

an
ce

Node.js Performance

JSON Serialization

33

Fetches single row from
simple database table

Row serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Single Query

34

Fetches single row from
simple database table

Row serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Single Query

JavaScript

Java

35

JavaScript WebApp Performance

-60.5

-100

-80

-60

-40

-20

0

20

40
%

ag
e

o
f

Ja
va

 P
er

fo
rm

an
ce

Node.js Performance

JSON Serialization

Single Query

36

Fetches multiple rows
from a simple database
table

Rows serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Multiple Queries

37

Fetches multiple rows
from a simple database
table

Rows serialized as JSON

Example response:

Results from TechEmpower.com Round 9 tests (2014-05-01)

Multiple Queries

JavaScript

Java

38

JavaScript WebApp Performance

-18

-100

-80

-60

-40

-20

0

20

40
%

ag
e

o
f

Ja
va

 P
er

fo
rm

an
ce

Node.js Performance

JSON Serialization

Single Query

Multiple Queries

39

Fetches multiple rows
from a simple database
table

Converts rows to objects
and modifies one attribute
of each object

Updates each associated
row and serializes as
JSON

Example Response:

Data Updates

Results from TechEmpower.com Round 9 tests (2014-05-01)

40

Fetches multiple rows
from a simple database
table

Converts rows to objects
and modifies one attribute
of each object

Updates each associated
row and serializes as
JSON

Example Response:

Data Updates

Results from TechEmpower.com Round 9 tests (2014-05-01)

JavaScript

Java

41

JavaScript WebApp Performance

28

-100

-80

-60

-40

-20

0

20

40
%

ag
e

o
f

Ja
va

 P
er

fo
rm

an
ce

Node.js Performance

JSON Serialization

Single Query

Multiple Queries

Data Updates

42

Computation speed is (much) slower than Java

I/O speed is higher than Java

JavaScript WebApp Performance

-75

-60.5

-18

28

-100

-80

-60

-40

-20

0

20

40
%

ag
e

o
f

Ja
va

 P
er

fo
rm

an
ce

Node.js Performance

JSON Serialization

Single Query

Multiple Queries

Data Updates

More
Computation

More
I/O

43

Under the Hood

44

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

int

Class pointer

Locks

Flags

10

Integer Object

Field Table

Constant Pool

Object Offsets

...

Integer Class

Java objects are fixed in size and shape

●Values associated with objects are fixed and typed (known what and where it is)

Methods associated with objects are fixed and typed (parameters and return types)

Object Representation: Java

name

Method Table

Super Class

45

Object Representation: JavaScript

JavaScript objects are dynamic in size and shape

Values associated with objects are dynamic and un-typed

Methods associated with objects are dynamic and un-typed

–32 “slots” exist for method and values with overflow arrays if this is not enough

–Every “slot” is 64bits as any type of data could be stored there

Map

Elements

Extra Props

1: 10

JSObject

2: intValue()

3:

32:

Map

value: 1

Map

1:

Length

2:

Fixed Array

Map

1:

Length

2:

Fixed Array

intValue(): 2

46

Object Representation: JavaScript

Order in which methods and fields are added matters

Objects are equivalent and equal, but have different Maps and layouts

Map

Elements

Extra Props

1: 10

JSObject

2: intValue()

3:

32:

Map A

value: 1

Map

1:

Length

2:

Fixed Array

Map

1:

Length

2:

Fixed Array

intValue(): 2

Map

Elements

Extra Props

1: intValue()

JSObject

2: 10

3:

32:

Map B

value: 2

Map

1:

Length

2:

Fixed Array

Map

1:

Length

2:

Fixed Array

intValue(): 1

47

Functions are stored in JavaScript objects as fields

–No fixed set of methods for an object

Objects are not typed, so data much be checked to determine how to handle it

eg. the '+' operator:

•number + number → addition

•string involved? → concatenation

•objects involved? → convert to primitives then addition or

concatenation

eg. property load:

•Load prototype object

•Load getter method

•Load callback function

Therefore not possible to determine what instructions to use just from the source code

JIT Compilation

48

JavaScript

on the JVM?

49

Nashorn and Avatar.js

Nashorn JavaScript engine delivered in JDK8

–Utilizes new JVM level features

for performance

Avatar.js provides Node.js support on Nashorn

Results of “Octane” JavaScript benchmark*:

–Node.js is 4.8x faster

–Avatar.js is >10x larger

* Using Java 8 pre-u20

50

Nashorn and Avatar.js

Nashorn JavaScript engine delivered in JDK8

–Utilizes new JVM level features

for performance

Avatar.js provides Node.js support on Nashorn

Results of “Octane” JavaScript benchmark*:

–Node.js is 4.8x faster

–Avatar.js is >10x larger

* Using Java 8 pre-u40

Feb 12th, 2015: Avatar is “put on hold”
https://blogs.oracle.com/theaquarium/entry/project_avatar_update

https://blogs.oracle.com/theaquarium/entry/project_avatar_update

51

Enterprise

Deployments

52

The PayPal

Story

53

2013: PayPal evaluates use of
Node.js for “Account Overview”
–Implementation done in both Java
and Node.js to compare

Node.js implementation
–50% less development effort

–33% fewer lines of code

–40% fewer files

–~35% faster request response

Note: legacy Java frameworks
involved.....

PayPal and “Account Overview” Project

54

The WalMart

Story

55

2013: Eran Hammer (WalMart) discovers 200+MB/day leak
– Increasing memory usage at 200+MB/day per server

Application improvements by Eran reduces leak to 8MB/day
– Lots of progress made

– But required months of investigation effort

 Identified remaining leak related to HTTP Client Requests

– Unable to make further progress....

 Node.js runtime development team required to resolve issue

– 5 core runtime developers/engineers

– 3 weeks of effort

WalMart experiences Node.js memory leak

56

IBM and

Node.js

57

Node.js Foundation Founding Member
– Alongside Joyent, Linux Foundation, Microsoft, PayPal and Fidelity

IBM SDK for Node.js v1.2
– Open source ports of Google V8 JavaScript engine

• Support for POWER and zLinux

– Runtimes available for all platforms to provide consistency

• AIX, Linux (Intel, POWER, System z, Windows, Mac OS X)

– http://www.ibm.com/developerworks/web/nodesdk/

● IBM Monitoring and Diagnostics Tools

– Live monitoring: Health Center

– GC log analysis: GCMV

– Dump analysis: IDDE

IBM and Node.js

http://www.ibm.com/developerworks/web/nodesdk/

58

JavaScript has a large amount of interest and is growing
–Web applications with code sharing between server and browser

–Async IO and event loop makes it easy to write scalable applications

–Rich set of APIs available via the npm module ecosystem

Dynamic nature makes development easier, but introduces
challenges

–Errors typically found during compilation are found at runtime

–JIT compilation loves certainty, which is removed

Additional “enterprise-grade” capabilities needed

– Monitoring/Diagnostics, Security, Internationalization, etc

– IBM contributing via the newly announce Node Foundation

Summary

Notices and Disclaimers
Copyright © 2015 by International Business Machines Corporation (IBM). No part of this document may be reproduced or

transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with

IBM.

Information in these presentations (including information relating to products that have not yet been announced by IBM) has been

reviewed for accuracy as of the date of initial publication and could include unintentional technical or typographical errors. IBM

shall have no responsibility to update this information. THIS document is distributed "AS IS" without any warranty, either express

or implied. In no event shall IBM be liable for any damage arising from the use of this information, including but not limited to, loss

of data, business interruption, loss of profit or loss of opportunity. IBM products and services are warranted according to the terms

and conditions of the agreements under which they are provided.

Any statements regarding IBM's future direction, intent or product plans are subject to change or withdrawal without

notice.

Performance data contained herein was generally obtained in a controlled, isolated environments. Customer examples are

presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual

performance, cost, savings or other results in other operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,

programs or services available in all countries in which IBM operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session speakers, and do not

necessarily reflect the views of IBM. All materials and discussions are provided for informational purposes only, and are neither

intended to, nor shall constitute legal or other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any relevant laws and regulatory requirements that may affect the customer’s

business and any actions the customer may need to take to comply with such laws. IBM does not provide legal advice or

represent or warrant that its services or products will ensure that the customer is in compliance with any law.

Notices and Disclaimers (con’t)

Information concerning non-IBM products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those products in connection with this

publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those

products. IBM does not warrant the quality of any third-party products, or the ability of any such third-party products

to interoperate with IBM’s products. IBM expressly disclaims all warranties, expressed or implied, including but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any

IBM patents, copyrights, trademarks or other intellectual property right.

•IBM, the IBM logo, ibm.com, Bluemix, Blueworks Live, CICS, Clearcase, DOORS®, Enterprise Document

Management System™, Global Business Services ®, Global Technology Services ®, Information on Demand, ILOG,

Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower, PureAnalytics™, PureApplication®,

pureCluster™, PureCoverage®, PureData®, PureExperience®, PureFlex®, pureQuery®, pureScale®, PureSystems®,

QRadar®, Rational®, Rhapsody®, SoDA, SPSS, StoredIQ, Tivoli®, Trusteer®, urban{code}®, Watson, WebSphere®,

Worklight®, X-Force® and System z® Z/OS, are trademarks of International Business Machines Corporation,

registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other

companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at:

www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

Thank You

Your Feedback is

Important!

Access the InterConnect 2015

Conference CONNECT Attendee

Portal to complete your session

surveys from your smartphone,

laptop or conference kiosk.

