
© 2015 IBM Corporation

IBM WebSphere Users Group

23rd March 2015

Virtualization Aware JVM
Making the most of a virtualized environment

Tim Ellison – Hursley labs

© 2015 IBM Corporation

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

2

© 2015 IBM Corporation3

Goals of this talk

 Describe the impact of deep systems virtualization on the Java Virtual Machine (JVM) and
Java Applications.

 Explain the benefits of making the JVM virtualization aware.

 Discuss techniques to optimize implementations for virtualized environments.

© 2015 IBM Corporation4

A stylized system environment

Hardware

OS

JVM

Middle-ware

Application

Proprietary CPU, Memory, IO designed for optimal performanceProprietary CPU, Memory, IO designed for optimal performance

Drivers, APIs, abstractions for software developers

Language virtual machine for portability and convenience

Business function building blocks and capabilities

Achieves a department or end user goal

Workload

© 2015 IBM Corporation5

A data centre environment is no longer what it was...

Hardware

OS

JVM

Middle-ware

Application

Hardware

OS

JVM

Middle-ware

Application

Hardware

OS

JVM

Middle-ware

Application

Workload Workload Workload

scaling

Isolation

Utilization

© 2015 IBM Corporation6

A data centre environment is no longer what it was...

Hardware

OS

JVM

Middle-ware

Application

Hardware

Hypervisor

Guest OS Guest OS

JVM

Middle-ware

Application

JVM

Middle-ware

Application

JVM

Middle-ware

Application

JVM

Middle-ware

Application

Workload
Workload Workload Workload

lightweight
containers

Virtualized machine

© 2015 IBM Corporation7

Virtualization available at every layer
 Hardware Virtualization

 Helps pack in more applications compared to bare metal
 These provide very good isolation at a cost of duplication of services → Higher Overhead
 Usecase: Multiple customers can be hosted on the same infrastructure.

 OS Virtualization - Containers
 New light weight containers such as Docker, Warden, AIX WPAR, Solaris Containers provide

basic isolation mechanism with very little overhead.
 Usecase: Multiple applications each running inside a container of its own for a single

customer.

 Runtime Virtualization – Virtualization aware Java VM
 Runtime Virtualization increases the resources that can be shared while still offering reduced

isolation.
 Usecase: Several instances of an application hosted on a single instance of Java for a single

customer.

© 2015 IBM Corporation8

What does this virtualization story mean to the JVM ?

 Fixed view of hardware resources.

 JVM resources do not change
during application life-cycle.

 Configuration usually determined at
start-up, and doesn't change during
the entire run.

 Resources are elastic. Hypervisors
might “re-assign” resources based on
need.

 Resource reporting APIs are
unreliable !

 Resources are shared, and limits can
change dynamically.

© 2015 IBM Corporation9

Physical View vs. Logical View – “How many CPUs do I have?”

Hypervisor

2 vCPUs 2 vCPUs

2 Cores

OS OS

Hypervisor

2 vCPUs 2 vCPUs

4 Cores

OS OS

2 vCPUs

OS

 CPU
Entitlement = 1

 CPU
Entitlement = 0.8

 CPU
Entitlement = 0.2

 CPU
Entitlement = 2

 CPU
Entitlement = 2

© 2015 IBM Corporation10

Am I Real or Am I Virtual ?!

 Q. Do Java applications need to know if they are running inside a Guest OS ?

 A. Mostly No. Only a small class of applications benefit
 Resource Orchestrators and Load Balancers
 Monitoring tools
 Debuggers and RAS Tools

 Q. Does the JVM implementation need to know if it is running inside a Guest OS ?

 A. Absolutely Yes !
 Manage Java resources based upon real physical resources.
 Provide virtualization info to applications.

© 2015 IBM Corporation11

Benefits of a virtualization aware JVM

 Make the most efficient use of resources in a virtualized environment.

 Propagate the knowledge up the software stack to enable load balancers to take
appropriate decisions.

 Remove necessity for multiple middle-ware products to understand intricacies of
hypervisors.

 Provide unified interface to be able to deal with a multitude of hypervisors.

© 2015 IBM Corporation12

IBM's JMX Beans for Virtualization
 com.ibm.lang.management.OperatingSystemMXBean – with IBM Extensions

– Extended OS usage statistics – Logical view
• Processor
• Memory

– OS Support: AIX, Linux, Windows and z/OS

 com.ibm.virtualization.management.HypervisorMXBean
– Detect if we are running on a hypervisor.
– Hypervisor Details (Currently only Vendor Name string)
– Hypervisors Supported: z/VM, PR/SM, PowerVM, VMWare, KVM (x86 and Power), Hyper-V

 com.ibm.virtualization.management.GuestOSMXBean
– Guest OS usage statistics as seen from the hypervisor – Physical View
– Usage Statistics

• Processor
• Memory

– AIX & Linux on PowerVM, Linux and Windows on VMWare, z/OS & zLinux on z/VM

© 2015 IBM Corporation13

JMX Beans for Virtualization

Hardware

OS

JVM

Middle-ware

Application

Hypervisor

OS

JVM

Middle-ware

Application

OperatingSystemMXBean HypervisorMXBean
&

GuestOSMXBean

© 2015 IBM Corporation14

OperatingSystemMXBean – New APIs

© 2015 IBM Corporation15

© 2015 IBM Corporation16

© 2015 IBM Corporation17

© 2015 IBM Corporation18

© 2015 IBM Corporation19

GuestOSMXBean use-case – Tune internals of JVM & Websphere

Hardware

OS

JVM

Middle-ware

Application

Hypervisor

OS

JVM

Middle-ware

Application

Determine
Thread-pool
size

Tune
GC & JIT

parameters

© 2015 IBM Corporation20

OperatingSystemMXBean use-case – Load Balance JVM Instances

Hardware

Monitoring
 Agent

OS

JVM

Middle-ware

Application

JVM

Middle-ware

Application

JVM

Middle-ware

Application

Spawn / destroy a JVM
based on system load

© 2015 IBM Corporation21

Implementation Notes
■ The Beans are available in IBM Java SDK version 7.1 onwards

■ Hypervisor specific setup may be required to obtain usage data.
– VMWare requires VMGuestLib to be installed (Is part of VMware tools)
– Hypfs needs to be mounted on zLinux

■ Hypervisor detection known to fail on certain older Intel processors
– IBM_JAVA_HYPERVISOR_SETTINGS environment variable can be used as a workaround
– See javadoc for HypervisorMXBean for more details.

■ Some data may not be available on specific OS / Hypervisor combinations.
– Javadoc should have all relevant info.

■ Currently only one level of hypervisor is supported. In case of multiple layers of hypervisor
(e.g. on zSystems), only the top level hypervisor info is returned.

■ Javacore now contains virtualization info.

© 2015 IBM Corporation22

Additional virtualization optimizations

© 2015 IBM Corporation23

Dynamic Heap Adjustment (softmx)

 Xmx
– absolute limit, fixed at startup

 Xsoftmx
– soft limit <= -Xmx, set dynamically through

JMX
– Garbage collector tries to shrink to softmx

over time
– Once at target will not expand beyond it

 OS Interaction
– JVM advises OS when memory freed
– Effectiveness depends on OS support

 Use cases
– Cap early, grow later
– Shrink to free unused memory

© 2015 IBM Corporation24

What is your application doing when Idle ?

 Does your application use lots of CPU even when Idle ?

 Historically poor Java idle behavior causes CPU burn
– Inefficient CPU usage in the Cloud

• Starves other VM's / JVM instances
– Increased client costs for CPU Usage

• Especially so on zSystems

 Memory hoarding of Idle JVM's.
– Reduce memory footprint when idle.

• “Boilerplate” applications in Bluemix that are never used, but are taking
up lots of memory.

 First step is to be able to measure precise JVM CPU usage

© 2015 IBM Corporation25

Application

System-JVM

Ability to categorize JVM threads for CPU usage

A
p

p
lic

a
tio

n
-U

se
r1

Application

A
p

p
lic

a
tio

n

-U
se

r2

A
p

p
-U

se
r3

A
-U

4

A
p

p
lic

a
tio

n
-U

se
r5

G
C

JI
T

O
th

e
r

 S
ys

C
P

U
 U

s a
ge

Thread Groups

R
es

ou
rc

e-
M

o
ni

to
r

© 2015 IBM Corporation26

JvmCpuMonitorMXBean

© 2015 IBM Corporation27

JvmCpuMonitorInfo

© 2015 IBM Corporation28

Javacore info

© 2015 IBM Corporation29

Use Cases for Thread-based CPU Usage

 Reporting transaction CPU usage

 Identifying "expensive" transactions

 Reporting JVM overhead over specific intervals

 Foundation for future work on tracking idle behaviour

 …

 Available in IBM Java SDK version 8 onwards

References
● http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.api.80.doc/com.ibm.lang.management/com/ibm/lang/management/JvmCpuMonitorMXBean.html
● http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xxreducecpumonitoroverhead.html?lang=en

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.api.80.doc/com.ibm.lang.management/com/ibm/lang/management/JvmCpuMonitorMXBean.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/appendixes/cmdline/xxreducecpumonitoroverhead.html?lang=en

© 2015 IBM Corporation30

-Xtune:virtualized

 Available from Java 7 SR4 onwards.

 Reduces JVM CPU consumption when Idle (mostly JIT).

 Needs a large shared class cache to maintain peak performance.

 AOT space in the Shared Class Cache (SCC) must not be capped.

© 2015 IBM Corporation31

Summary

 Virtualization layers hide “real” resource information.

 JVM needs to know the underlying architecture at start time.
– It then needs to periodically monitor for any changes.

 Applications can make use of the MBeans to do the same.

 Use only as much memory as you need.
– Make use of SoftMX to reduce the heap dynamically.

 Idle detection and deep sleep helps cut costs.
– Use MXBean to monitor Idle behaviour.

© 2015 IBM Corporation32

Copyright and Trademarks

© IBM Corporation 2015. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and
trademark information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml

