
© 2009 IBM Corporation

Building highly available architectures with
WAS and MQ

Matthew B White – IBM Messaging Integration, Connectivity and Scale

March 2015

© 2015 IBM Corporation

Please Note

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information
about potential future products may not be incorporated into any contract. The
development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the
amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

© 2015 IBM Corporation

Abstract and Aims

Abstract:

This talk will look at architectures in which IBM MQ can be configured with the IBM
WebSphere Application Server (and Liberty profiles) to give a highly-available scenario.

The basis be some of the scenarios that are documented in the developerWorks series "A
flexible and scalable WebSphere MQ topology pattern".

Aims:

 Outline some of the technologies and features that can be used for High Availability

 Consider some of the implications of technology choices

 Provide references for further study

 Find out what scenarios and concerns are of most interest

i.e. what we should be developing next!

© 2015 IBM Corporation

..small warning...

 Designing, Implementing and Managing availability
solutions is complex

 This presentation outlines some of the ideas,
technologies and some points to keep in mind

 Coming from the development organization...

 So is just the 'tip of the HA iceberg'

Availability

© 2015 IBM Corporation

Agenda

 Introduction to HA concepts

 Product Technologies of Interest

 MQ – Multi-Instance QueueManagers

 Auto-reconnect from JavaEE

 Transactional Considerations

© 2015 IBM Corporation

1 Slide introduction to High Availability

 High Availability – Ability of a system or component to be operational when required

 Continuous Availability - … accessible at all times for both planned and unplanned
events

 Redundancy – eliminating single points of failures

 Fail-over Strategies
Cold Standby - Warm Standby - Hot Standby

 Software Clustering
Vertical - Horizontal

 Hardware Redundancy
…not covered here

 Costs of High Availability
...not covered here

© 2015 IBM Corporation

Messaging design affecting availability

 Fire and Forget vs Request-Response
Think about how the response is going to get back – is the route important?

 Synchronous vs Asynchronous
Is a response expected immediately? How is that response getting back

 Affinity
Message – relationship between messages
Server – relationship between connections
Session
Transaction

 Message Ordering
Can get difficult with a HA solution; even transaction recovery can happen concurrently
with delivery

 Transactional Concerns
Where is transaction state held?

© 2015 IBM Corporation

Product Technologies

 Hardware Clustering

 Network Spraying

 IBM MQ
Multi-instance Queue Managers
Queue Manager Clusters

Workload balancing
Queue Sharing Groups
Client – connectivity

Reconnect, Connection Name Lists, CCDTs

 WAS
Clustering
Network deployment, nodes
Application availability

© 2015 IBM Corporation

IBM MQ – Multi-instance Queue Managers

 Basic failover support without HA coordinator
Faster takeover: fewer moving parts
Cheaper: no specialised software or administration skills needed
Windows, Unix, Linux platforms

 Queue manager data is held in networked storage
NAS, NFS, GPFS etc so more than one machine sees the queue manager data

 Multiple (2) instances of a queue manager on different machines
One is “active” instance; other is “standby” instance
Active instance “owns” the queue manager’s files and will accept app connections
Standby instance does not “own” the queue manager’s files and apps cannot connect
If active instance fails, standby performs queue manager restart and becomes active

 Instances share data, so it’s the SAME queue manager
Including transactional logs

© 2015 IBM Corporation

Multi-Instance QMs

Owns the queue manager data

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

can fail-over

MQ
Client

network

192.168.0.2192.168.0.1

networked storage

1. Normal
Execution

© 2015 IBM Corporation

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

locks freed

MQ
Client

network

192.168.0.1

networked storage

2. Disaster
Strikes

Connections
broken from
clients

192.168.0.2

© 2015 IBM Corporation

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

locks freed

MQ
Client

network

192.168.0.1

networked storage

2. Disaster
Strikes

Connections
broken from
clients

192.168.0.2

© 2015 IBM Corporation

MQ
Client

Machine B

QM1

MQ
Client

network

networked storage

Owns the queue manager data

QM1
Active

instance

3. Standby
Comes to Life Connections

still broken

192.168.0.2

© 2015 IBM Corporation

MQ
Client

Machine B

QM1

QM1
Active

instance

MQ
Client

network

networked storage

Owns the queue manager data

4. Recovery
Complete Clients reconnected.

Processing
continues.

192.168.0.2

© 2015 IBM Corporation

Using Multi-instance Queue Managers from JavaEE

© 2015 IBM Corporation

Auto-reconnect in JavaEE

 Separate out the MQ concepts of
'client auto-reconnect'
'connection name list'
And the role of the CCDT

 Client auto-reconnect is the ability of the MQ remote FAP transport to re-establish a
client connection in the case of failure

Controlled by ClientReconnectOptions

 Connection Name List provides the list of alternate host:port values of a queue manager

 CCDT provides a list of client definitions with weightings – and can also specify
Connection name list, and ClientReconnectOptions

 Auto-Reconnect: NOT SUPPORTED in any MANAGED JavaEE Container from ANY
vendor

© 2015 IBM Corporation

Container Summary

Connection
Name List

CCDT Reconnect
Options

Alternatives

Activation
Specifications

Supported
(with restrictions)

Supported
(with restrictions)

NOT supported Act Specs own
reconnect logic

Listener Ports Supported
(with restrictions)

Supported
(with restrictions)

NOT supported WAS's own
reconnect logic

Web and EJB
applications

Supported
(with restrictions)

Supported
(with restrictions)

NOT supported Application own
re-connection logic

Client Container Supported Supported Supported N/a

© 2015 IBM Corporation

Activation Specifications – Connection Name List

 On Start-up - 1st entry in ConnectionNameList tried, then 2nd, 3rd, etc..

 Start-up retry properties defined on the Resource Adapter

 startupReconnectionRetryCount specifies the number of times that the WMQ RA will
attempt to connect the endpoint, and the

 startupReconnectionRetryInterval property defines the time between reconnection
attempts.

 During message processing the Java EE environment will detect the failure and then try
to reconnect the Activation Specification.

 1st entry in ConnectionNameList tried, then 2nd, 3rd, etc..

 After trying all of the entries it will wait for the period of time reconnectionRetryInterval
before trying again.

 reconnectionRetryCount defines the number of consecutive reconnection attempts
before an Activation Specification is stopped and will require a manual restart.

© 2015 IBM Corporation

Activation Specifications - CCDT

 Very similar – the CCDT is, in effect, a list of entries that can be selected from.

 Entries can contain connection name list

 Best not to mix for “sanity's sake”

© 2015 IBM Corporation

Web and EJB Containers

 Application, alongside normal error handling, needs to determine if wants to retry

 Application can
(1) Fail completely – and get re-driven later
(2) Re-drive the createConnection() call

 Re-drive the create Connection call …
.. this critically will re-drive the scan along the connection name list
.. or CCDT if one has been specified

 Depending on app server connection pools might be in use

 These may or may not purge themselves if a connection broken exception occurs

 Plus a connection pool might end up with different connections in the same pool

© 2015 IBM Corporation

Transactional Considerations

 In a recovery situation the Transaction Co-ordinator needs to be able to get info on in
doubt transactions from Resource Managers

Implies...

 WAS needs to be able to connect to the QueueManager that has the logs

 Connection Factories may not deterministic as to the connection made
c.f. Load balanced CCDTs, Connection Name List or IP Sprayers.

 Connecting to a different QM will give incorrect transaction state to WAS

 Transactions really in-doubt may be committed

 Anything that alters where connections go may affect XA recovery

RFE 53793: http://www.ibm.com/developerworks/rfe/execute?use_case=viewRfe&CR_ID=53793

© 2015 IBM Corporation

Group-Level units of recovery - zOS

 A client’s two-phase/global transaction can now be owned by a QSG

 Instead of by individual queue managers

Implies...

 These in-doubt transactions can be resolved on any QMGR in the QSG.

 Therefore having a z/OS queuemanager provides extra support for HA/Transactions

© 2015 IBM Corporation

Load Balancing

 Horizontal Scalability – implies that some way of balancing load across the components is
required

 Can bring in WAS and MQ Clustering technologies
Achieves balancing for those servers

 Can also use IP or hardware based balancing as well

 WAS → MQ balancing can be achieved using CCDT based weighting

 Co-located servers are also used to dedicate resource

 Or handle via administrative actions

 What is considered the Single Point of Failure?

© 2015 IBM Corporation

WLM Comparison
CONNAME list CCDT (multi-QMGR) Load balancer Code stub

Scale of code change
required for existing
apps that connect to a
single QM

+ive
MQCONN("QMNAME") to MQCONN("*QMNAME")
QMName might be in JNDI config for Java EE apps.
Otherwise requires a one character code-change.

-ive
Replace existing JMS/MQI
connection logic with code
stub.

Support for different
WLM strategies

-ive
Prioritized only

=
Prioritized + Random

+ive
Any, including per-
connect round-robin

+ive
Any, including per-message
round-robin.

Performance overhead
while primary QM is
down

-ive
Always tries first in list

+ive
Remembers last good

+ive
Port monitoring avoids
bad QMs

+ive
Can remember last good,
and retry intelligently

XA Transaction Support -ive
The transaction manager needs to store recovery information that
reconnects to the same QM resource. An MQCONN that resolves to
different QMs generally invalidates this. e.g. in Java EE, a single
Connection Factory should resolve to a single QM when using XA.

+ive
Code stub can meet the XA
transaction manager’s
requirements. e.g. multiple
Connection Factories.

Connection rebalancing
on failback.
e.g. when a QM restarts
after a failure or planned
outage, how long till
apps use it again

-ive
Connection pooling in Java EE will hold onto connections indefinitely,
unless connections are configured with an aged timeout. Using an aged
timeout might drive exceptions in some cases. An aged timeout also
introduces a performance overhead during normal operation.
Conversation sharing might need to be disabled (SHARCNV=1) with an
aged timeout to ensure reconnects always establish a new socket.
The ‘remembers last good’ CCDT behaviour might also delay failback.

+ive
Code stub can handle
failback flexibly, with little/no
performance overhead.

Admin flexibility to hide
infrastructure changes
from apps

-ive
DNS only

=
DNS and/or shared file-
system / CCDT file push

+ive
Dynamic Virtual IP
address (VIP)

=
DNS or single-QMGR CCDT
entries

http://www-01.ibm.com/support/docview.wss?uid=swg21508472

© 2015 IBM Corporation

Active – Active Scenarios

 Often get asked for active-active configuration
What exactly does this mean?

 Typically this 2 application servers connected to 2 QM s
Often done for load balancing to give horizontal scaling

 Question:
What fail over characteristics are required?
What is the affinity of the applications and instructure
QM workload can be re-distributed by CCDT

Connection pool re-balancing on recovery
Application

© 2015 IBM Corporation

Practical Scenario:
“A flexible and scalable MQ topology Pattern”

 DeveloperWorks series by Peter Broadhurst

 Pattern discussed in detail here: http://ow.ly/vrUUV

✔ Continuous availability to send MQ messages, with no single point of failure
✔ Linear horizontal scale of throughput, for both MQ and the attaching applications
✔ Exactly once delivery, with high availability of individual persistent messages
✔ Three messaging styles: Request/response, fire-and-forget, and publish/subscribe
✔ A hub model, with a centralized MQ infrastructure scaled independently from the

application

✔ Standalone, JavaEE and SCA environments

http://ow.ly/vrUUV

© 2015 IBM Corporation

MQ Cluster
Workload Balancing

MQ Cluster
Workload Balancing

Overview – architecture view

 Every sender/requester uses two connections
 Every receiver/service has two listeners
 Make each Queue Manager HA to recover persistent messages
 Simple to interoperate with co-located Queue Managers
 Simple to interoperate with z/OS Queue Sharing Groups

App1 QM1App1 QM1

App1
QM2
App1
QM2

App2 QM1App2 QM1

Shared QM1Shared QM1

Shared QM2Shared QM2

App1 Inst1App1 Inst1

App1 Inst2App1 Inst2

App1 Inst3App1 Inst3

App1 Inst4App1 Inst4

App2 Inst1App2 Inst1

App2 Inst2App2 Inst2

App2 Inst3App2 Inst3

App2 Inst4App2 Inst4

App2 QM2App2 QM2

App2 QM3App2 QM3

App2 QM4App2 QM4

App1 Inst1App1 Inst1

App1 Inst2App1 Inst2

App1 Inst3App1 Inst3

App1 Inst4App1 Inst4

App2 Inst1App2 Inst1

App2 Inst2App2 Inst2

© 2015 IBM Corporation

Overview – infrastructure view

 Principal design philosophy is active/active
• Continuous availability of the service

 Minimum number of queue managers is 2
• Sending and receiving gateway roles can be fulfilled by the same qmgr

 HA failover is optional
• If you have persistent messages that you need to recover quickly after a failure

MQ1
Standby

MQ2
Standby

Machine 1 Machine 2

HA failover

HA failover
MQ2

(Sending &
Receiving GW)

MQ1
(Sending &

Receiving GW)

Highly available
network-attached

file-system

MQ Hub

Senders Receivers

© 2015 IBM Corporation

Overview – 2 is the magic number

 Every sender sends to two queue managers
• No single point of failure for sending messages
• Not too many places to look for messages

 Every receiver listens to two queue managers concurrently
• Every queue manager has two app instances listening for messages
• Every app instance listens to two queue managers
• Note: cannot have more receiving gateways than receiving app instances

 No single point of failure
• Any single component can fail, and all other components continue processing

M
Q

 C
luster

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Sender 1

Sender 2

Sender 3

Sender 4

Sender 5

Sender 6

Sender 7

Sender 8

MQ
Gateway 1

MQ
Gateway 2

MQ
Gateway 3

MQ
Gateway 4

MQ
Gateway 5

MQ
Gateway 1

MQ
Gateway 2

MQ
Gateway 3

MQ
Gateway 4

MQ
Gateway 5

© 2015 IBM Corporation

Sending messages

 Each app instance sends to two different queue managers
 Need a workload management strategy

• Prioritised
• Random
• Round robin – my personal preference

 Biggest practical concern for customers:

How do I create/change my app code to connect
to two different remote queue managers

Sending
application

Connection
logic

(CCDT or
custom)

Sending
Gateway 1

Sending
Gateway 2

MQ connection 1

MQ connection 2

M
Q

 C
lust er

© 2015 IBM Corporation

Receiving messages

 The application needs two active listeners
• Random/prioritised attachment can lead to stranded messages
• AMQSCLM is an alternative

 For Java EE this means two MDB endpoints
• EJB 2.1 style deployment descriptors

– Add a second endpoint to the XML

• EJB 3.0 style annotations
– Create a code hierarchy

EJB 2.1 & 3.0 samples on github:
https://github.com/ibm-messaging/mq-wlm-client

Receiving
application

Active

Active

MQ Listener 1

MQ Listener 2

M
Q

 C
lust er

Receiving
Gateway 1

Receiving
Gateway 2

https://github.com/ibm-messaging/mq-wlm-client

© 2015 IBM Corporation

Publish/subscribe messaging

 MQ gives the same QoS for pub/sub as for P2P
• Fan out messages one-to-many
• WLM across multiple subscriber instances

 Achieved by bridging durable subscriptions to cluster queues
• Define subscriptions on queue managers where publishers connect

Sub1 Inst1

Sub1 Inst2Pub Inst1

Pub Inst2

QM1

QM2

QM3

QM4

 P
ub/S

ub F
an

-O
u

t
+

 M
Q

 C
lu ster W

L
M

Sub2 Inst1

Sub2 Inst2

QM3

QM4

© 2015 IBM Corporation

Synchronous request/response

Response 1
Requester
application

Connection
logic

(CCDT or
custom)

MQ 1

MQ 2

MQ connection 1

MQ connection 2

M
Q

 C
lust er

Request 1

Response 2

Request 2

Use same MQ connection to receive the response
•e.g. the same JMS Session

MQ fills in the MQMD.ReplyToQMgr on send
•Back-end app must honour this when sending the response

© 2015 IBM Corporation

Sample JavaEE applications

 WLMJMSAttachLibrary
 Code library used within all of the applications to establish workload-balanced

outbound connections. In the example projects and deployment, this library is
bundled individually within each EAR that depends on it.

© 2015 IBM Corporation

Asynchronous
Receiver

Two-way asynchronous messaging

 The optimal use of messaging is fully asynchronous
 Requests are sent “fire & forget”, as are responses

• Critical requests are sent as persistent within a transaction that updates a DB
• Transactional state update + persistent send = exactly once delivery

 Responses are handled by any app instance at any time
• No thread is left ‘hung’ in the requesting application
• If responses need to be correlated with requests, then a state store is used

– A Database – DB2 etc.
– An elastic cache – WebSphere eXtreme Scale

 Must be designed into the application
• Can revolutionize responsiveness
• Truly decouples applications

Receiving
application

Active

Active

MQ Listener 1

MQ Listener 2

M
Q

 C
luste

r

Receiving
Gateway 1

Receiving
Gateway 2

Fire &
Forget
Requester

CCDT
or custom

Sending
Gateway 1

Sending
Gateway 2

MQ connection 1

MQ connection 2

MQ Listener 1

MQ Listener 2

50% requests

50% requests

50% responses

50% responses

© 2015 IBM Corporation

Limitations for messaging ordering

 No active/active solution is provided here for ordered messages
MQ only assures order when there is one path from
producing thread to consuming thread

 The simplest solution, and as far as this presentation goes
Allocate individual queue managers with HA Failover for ordered messages

MQ
Gateway 1

MQ
Gateway 2

MQ
Gateway 1

MQ
Gateway 2

MQ
Gateway N1

MQ
Gateway N2

MQ
Gateway N1

MQ
Gateway N2

Receiver 1

Receiver 2

Receiver 3

Receiver 4

Receiver N1

Receiver N2

Receiver N3

Receiver N4

Sender 1

Sender 2

Sender 3

Sender 4

Sender N1

Sender N2

Sender N3

Sender N4

M
Q

 C
lu

ster W
o

rkloa
d M

an
ag

em
en

t

. .

. . .

. . .

.. .

.

Sender
Sending
gateway

Receiving
gateway Receiver

Can be the same queue manager.
Might be in different hubs.

© 2015 IBM Corporation

References

 “High Availability in WebSphere Messaging Solutions”
http://www.redbooks.ibm.com/abstracts/sg247839.html

 “IBM WebSphere Application Server v8 Concepts, Planning and Design Guide”
http://www.redbooks.ibm.com/abstracts/sg247957.html

© 2015 IBM Corporation

References

 “A flexible and scalable WebSphere MQ topology pattern”
http://www.ibm.com/developerworks/websphere/library/techarticles/1303_broadhurst/1303_broadhurst
.html

 “Workload Balancing “
https://www.ibm.com/developerworks/community/blogs/messaging/entry/ccdts_connection_namelists_l
oad_balancers_and_code_stubs?lang=en

 “Scenario: Using a multi-instance queue manager for high availability with WebSphere
Application Server”
http://www-
01.ibm.com/support/knowledgecenter/prodconn_1.0.0/com.ibm.scenarios.wmqwasha.doc/topics/scenari
o_overview.htm

http://www.redbooks.ibm.com/abstracts/sg247839.html

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Overview – architecture view
	Overview – infrastructure view
	Overview – 2 is the magic number
	Sending messages
	Receiving messages
	Publish/subscribe messaging
	Scalable pattern: Synchronous request/response
	Slide 34
	Two-way asynchronous messaging
	Slide 37
	Slide 38
	Slide 39

