
Caching patterns and extending mobile
applications with elastic caching
(With Demonstration)

Ready For Mobile

81
percent of customers depend
on social sites for purchasing

advice.

Social

62
percent of total workloads will be

in the cloud by 2016.

Cloud

1
billion (plus) smart
devices shipped in

2013 alone.

Mobile

90
percent of the data

created in the last two
years alone.

Big Data

Internet of Things

billion devices connected to
the internet by 2020.

75

The world is changing and each of these technology shifts has
potential to make a significant impact.

Mobile is driving significant shifts

Mobile has become a primary mode of transaction
35% of the average top 50 retailers’ monthly
audience comes exclusively from mobile platforms

Compatibility is no longer enough; mobile needs to be first

70% or more of mobile leaders say they have been successful in
ensuring interoperability with other systems, leveraging APIs for
external or cloud-provided data services

Becoming mobile first means embedding mobile into the design of business and
IT processes.

Mobile can capture and deliver insights anytime, anywhere
90% of new passenger cars sold will have some form of in-vehicle
platform by 2020, up from 10 percent in 2012.

Billions of connected devices, embedded sensors in roadways, buildings and
machinery, and myriad machine-to-machine communication systems are
delivering a continuous feed of data.
By applying analytics, organizations can know their customers better and operate
more efficiently

Building Mobile apps that support a
range of devices, are easy to use and look
really cool

Rapidly innovating to keep enhancing
experience

Protecting Mobile access to enterprise
data

Scaling elastically to deliver
responsiveness

Integrating Mobile activities with rest of
business

Increasing speed to market to deploy
capabilities

Creating a truly engaging Mobile experience involves far
more than building great Mobile apps

§  Focus here is on Scaling elastically to deliver responsiveness!

What is Unique About Mobile Integration Scenarios?

§  The technologies tend to be a bit different
– JSON/REST instead of SOAP/XML,

§  Bandwidth and battery life are at a premium
– Need to minimize back and forth communications

§  Security is a paramount concern
– Mobility of devices makes them easier to steal or spoof

§  Access patterns and volumes are less predictable
– More service calls on mobile devices, potentially more users, anytime

§ Performance matters
– Performance expectations are much higher on mobile

How might I improve my mobile application performance?

6

Question:
How can I make sure my
mobile solution is responsive
regardless of load?

Answer:
Introduce a caching layer in
the pattern for improved
performance and throughput

Pattern:
•  Worklight
•  WebSphere Application Server (WAS/Liberty)
•  WebSphere eXtreme Scale (WXS) / XC10

Apply to:
•  Customer has very high volume of mobile traffic
•  Customer needs consistent and fast response time for their mobile apps
•  Customer wants to reduce hardware spending on backend infrastructure

What is a cache anyway?

7

A cache allows you to get stuff faster and helps you avoid doing
something over and over again (which may be redundant and
may not make sense)

(far away)

(near)

(happy)

How to overwhelm an enterprise

Laptops, Ultrabooks, Tablets,
Smartphones

+ Transaction
Overload

Mobile Access

=

E-mail, SMS, Pop-up, Click-thru
Promotions, Web Crawlers

+
All of the

above = Transaction
Overload

Targeted Advertising

= TV, Movie, Sports Personality
mentions / endorses product

+ Transaction
Overload

Social Media

=

Retail, Banking, Finance, Insurance, Telecom, Travel & Transportation …

Where do we cache?

A database cache? A page fragment cache? A service Cache?

TOO SPECIFIC!
•  A cache is a tool for reducing application path length
•  OR the distance data has to travel before it gets to the customer/data sink

Web Channel

Mobile Channel

DB
Data

Service Logic
OR
Map

10

Caching requirements and benefits

§ Requirements
– Read-mostly data access
– Data change rate << data access rate
– Same data set accessed across multiple request

§ Expected benefits
– Fast data access

•  Low latency
•  Constant millisecond level response time

– Linear scalability
– Off-load backends

11

Throughput & Response Time vs Workload

0%

50%

100%

150%

200%

250%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Workload

Th
ro
ug
hp
ut

0%

100%

200%

300%

400%

500%

600%

700%

800%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Workload

R
es

po
ns

e
Ti

m
e

Nominal load Peak Burst

Linear
scalability

•  Caching can provide improved response times and linear scalability of your
applications, essential high traffic volumes, peaks, and bursts of transactions.

Gee, I already do caching…

Problems with local caching:
•  Local cache doesn’t scale

•  Local cache is not fault tolerant or highly available

•  Need to handle invalidation across a cluster

•  Local cache is typically single function or application specific

•  Local cache memory requirements could actually degrade performance
due to Garbage Collection cycles on large JVM heap sizes

•  Resource contention for managing local cache (CPU, memory, I/O)

0%

50%

100%

150%

200%

250%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

Workload

Th
ro
ug
hp
ut

Why you might need elastic caching

Scalability issues with database servers

Large volume of data

Fault tolerance and self-healing

Data redundancy and replication

•  Adding extra hardware is not easy
•  Licensing costs

•  Ability to handle volumes of data without
slowing down data access

•  Handle data surges during product launches
and live events

•  Need for automatic mechanisms to avert
system failure affecting end-users

•  Data integrity

•  Maintain data reliability in case of failover

What is a Data Grid?

Distributed in-memory object cache

Capable of massive volumes of transactions

Self-healing, allow scale-out / scale-in

Splits a given dataset into partitions

•  Elastic, scalable, coherent in-memory cache
•  Dynamically caches, partitions, replicates and manages
application data and business logic across multiple servers

•  Provides qualities of service such as transaction
integrity, high availability, and predictable response
times

•  Automatic failure recovery
•  On-the-fly addition / removal of memory capacity

•  Primary and Replica shards (Fault tolerant)

15

Characteristics of a Data Grid

§ Data is de-normalized
§ Data Grid is transactional
§ Simple APIs

– Get, Insert, Update, Delete
– SQL-like query language

§  Can be horizontally partitioned
–  Linear Scalability

§ Often transient or referential data
– HTTP sessions, user profile, etc
– Mainframe DBMS / MIPS offloading
– Read-only or read-mostly
– Can tolerate some staleness

Elastic Cache
(In-Memory Data Grid)

Enterprise Architecture

Application Server Tier

RDBMS TPM
Back-end Services

Web Server Tier

Elastic Cache
(In-Memory Data Grid)

Application State Store Pattern (like HTTP session data) 1

Application Server

• Single replacement for multiple local caches
• Increases the size of cache vs replicated caches

• Consistent response times
• Reduces Application Server JVM heap size

• Improved memory utilization - more memory for
applications
• Faster Application Server start-up

• Removes invalidation chatter of local caches
• Applications move application state to grid

• Stateless applications scale elastically
• Application state can be shared across data
centers for high availability

Applications use single coherent, highly- available, scalable cache

18

18

Redundant copies of data at
different versions

Traditional Cache Operation

•  Cache capacity
determined by individual
JVM Size.
•  Size of each cache = M
•  # JVMs = N
•  Total cache = M

•  Invalidation load per
server increases as
cluster grows.

•  Cold start servers hit the
 database. A Application

A Application

A Application

A Application Invalidation C
hatter

Database

Application
Invalidation load
increases with cluster
size

New Server
with cold cache

High load on
Database

19

19 Scalable Caching in an Enterprise Environment with IBM WebSphere eXtreme Scale - Overview

Application E

B’

WebSphere eXtreme Scale Cache Operation

•  Cache capacity determined
 by total cluster size

•  Size of each cache = M
•  # JVMs = N
•  Total Cache = M x N

•  No invalidation chatter

•  Linearly scalable

•  Less load on database and
 no cold start spikes

Application D C’

Application C D’

Application B A’

Application A

Cache
4x Larger

Cache
5x Larger

E’

Elastic Cache

Side Cache Pattern

Application Server

§  Client first checks the grid before using
the data access layer to connect to a
back end data store.

§  If an object is not returned from the grid
(a cache “miss”), the client uses the data
access layer as usual to retrieve the
data.

§  The result is put into the grid to enable
faster access the next time.

§  The back end remains the system of
record, and usually only a small amount
of the data is cached in the grid.

§  An object is stored only once in the
cache, even if multiple clients use it.
Thus, more memory is available for
caching, more data can be cached, which
increases the cache hit rate.

§  Improve performance and offload
unnecessary workload on backend
systems.

Back-end Services

RDBMS

TPM

2

Elastic Cache

Mobile Gateway Acceleration

Mobile Gateway

§  By integrating Elastic Cache with
Mobile Gateway, users can see
improved performance without the
penalty of having to scale to a
large cluster of Mobile Gateways

§  Use Side cache to cache XSLT
transforms

§  Directly access the Elastic Cache
to retrieve cached objects

§  Use Elastic Cache to provide
session state for stateless
communication

Application Server

TPM

RDBMS

Elastic Cache

 In-line cache – Database shock absorber 3

§ The grid can be used as a special data access
layer where it is configured to use a loader to get
data from the back-end system.

•  Read through cache
•  Write through cache (Synchronous writes)
•  Write-behind cache (Asynchronous writes)

§ System of Record Data Store
•  Cache is used as the system of record
•  Write behind technology pushes changes

asynchronously to the backend.
o Changes batched
o Only last change written

•  Runs through backend outages!

§ Benefits
•  Writes faster (memory vs. disk speed)
•  Backend load reduced, throughput improved
•  Increased availability and scalability

Application Server

RDBMS

Elastic Cache

eXtreme Transaction Processing 4

Agent

§  Lowest possible latency

§  Application code (Agent) runs
in the grid itself
§  Map/Reduce API supported
§  Results sent back to client

§  Events routed to correct
partitions for processing

§  Databases relegated to
durable log and reports

RDBMS

Elastic Cache

Map Reduce Parallel Processing

Agent

§  Parallel Map
•  Allows the entries for a set of

Entities or Objects to be
processed and returns a
result for each entry
processed

§  Parallel Reduction

•  Processes a subset of the
entries and calculates a single
result for the group of entries

§  Since the Elastic Cache is the
system of record, there is little
to no load on the back-end
data stores

RDBMS

Elastic Cache Shared Service
PureApplication System, PureApplication Service, Bluemix

§  Provides Elastic Caching
resource for cloud based
architectures

§  Elastic Cache service is
multi-tenant

•  Support grid capping
•  Individual maps per cloud

group
•  Authentication /

Authorization per map/
grid

§  Used for
•  Simple Cache
•  HTTP session distribution
•  Dynamic Cache provider

Elastic Cache
(In-Memory Data Grid)

Application Server

Elastic Cache

Application Server

RDBMS

TPM

Elastic Cache

Application Server

RDBMS

Elastic Cache

RDBMS

Application State Store Pattern 1 Side Cache Pattern 2

 In-line cache 3 eXtreme Transaction Processing 4

§ Java and .NET applications can now interact natively
with the same data in the same data grid, leading the
way toward a true enterprise-wide data grid.

§ A new REST Gateway provides simple access from
other languages.

§ WXS 8.6 delivers a faster, more compact serialization
format called eXtreme Data Format (XDF), which is
neutral to programming languages.

§ A new transport mechanism, eXtreme IO (XIO)
removes the dependency on the IBM ORB, enabling
easier integration with existing environments.

§ Built in pub/sub capabilities enable WXS 8.6 to update
client “near caches” whenever data is updated,
deleted, or invalidated on the server side.

§ API enhancements enable continuous query or data
that is inserted and updated in the grid.

IBM Elastic Caching Delivers
Consistent Response Times, High Availability of Data & Linear Scalability for Enterprise-wide Data Grids

WebSphere eXtreme Scale V8.6

A powerful, scalable, elastic in-
memory grid for your business-

critical applications

Rapid, “drop-in” use with a
broad range of Java and non-

Java application environments

 DataPower XC10 Appliance V2.5

§ Rapid drop-in use across a broad range of application
server technologies and programming languages

§ New data format (eXtreme Data Format –XDF) improves
performance and allows data to be shared natively
between Java & .NET applications

§ Built in notification infrastructure allows for client-side
event notification, continuous query cache and near-
cache invalidation

§  Improved usability, serviceability

§ Supports FIPS security protocol for government and
financial sector compliance

§  Improved performance

§  Improved monitoring and administration capabilities

28

Mobile / Caching DEMO integration: Goals

§ Goals:
•  Reduce response time for REST Service (or API) providing the offers and incentive

information to IBM bank customers
•  Provide increased throughput of the IBM bank services
•  Ensure that increased demand of the mobile bank features do not overload the back-end

services
•  Reduce the overall load to the back-end resource intensive resources such as the

databases
•  Updates to the offerings and details (directly in the cache) are immediately available to

mobile banking customers

29

Mobile / Caching DEMO integration: Goals
§ How:

•  Implement an elastic (In-Line) caching layer between the Application servers and the
backend database

•  Provide cache preloading to ensure high cache hit ratio from the very first transaction
•  Provide an asynchronous loader to keep the back-end database in synch with changes to

the cache content. Loaders run inside the Grid Container.

DEMO

31

Mobile and Caching integration demonstration

§  IBM Bank mobile customer
experience with ‘My Offers’ section
of the mobile demonstration

1.  Customer login into the mobile app
2.  Select ‘My Offers’ to view incentives
3.  Browse list of current offers / incentives
4.  Select an offer
5.  View the details of the offer / incentive

§  All interaction from the mobile
application is directly with the cache

1

2

3

4

32

Administrative views in Mobile and Caching demo

§  IBM Bank Administrator experience
•  View offers from cache and/or database

1.  Admin pre-loads the cache from the
database

2.  Select ‘IBM Bank (ID=33)’ to view offers from
the cache or database

3.  Select an offer from the list to view the
details page of the specific offering

4.  Work with specific details of the offering

•  Administrator can also Update offers in the
cache / database

1
2

3

4

33

Administrative update of Offering details / attributes

§  IBM Bank Administrator experience
•  Update offering details

•  Set an appropriate expiration date
for an offering

1.  Admin selects IBM bank from Grid
2.  Admin Selects an offering from the Grid
3.  Admin Clicks one of the detailed attributes to

update (Expiration date)

•  All updates are to the grid.
•  WXS loader is used to synchronize the grid

changes to the database, asynchronously
•  Write-behind loader

33

1

2

3

4

34

Administrative updates to Offering in cache / database

1.  Admin selects IBM bank from Grid
2.  Admin Clicks one of the offerings to be

updated (Activated status)
3.  Admin updates the ‘Active’ status to activate

the offering

•  All updates are to the grid
•  WXS loader is used to synchronize the grid

changes to the database, asynchronously
•  Write-behind loader

33

1

2

§  IBM Bank Administrator experience
•  Update offering information
•  Activate an offering for mobile customers

3

Demonstration – IBM Bank Mobile application with elastic caching

1.  Pre-load the cache with IBM Bank Offerings and Incentives
2.  View ‘Active’ offerings using mobile application. All data retrieved directly from cache via REST Service

or API
3.  Administrator updates and activates a new offering in the cache.

•  In-line cache updates the back-end database via asynchronous ‘write-behind’ loader
4.  From mobile application, view updated list of offerings in cache

