
From straightforward to sophisticated:
UI customization for IBM WebSphere Portal
and WCM

David Strachan
CTO, IBM Software Services for Collaboration
david.strachan@uk.ibm.com

Graham Harper
Application Architect, IBM Software Services for Collaboration
Graham_harper@uk.ibm.com

© 2013 International Business Machines Corporation 2

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s
sole discretion.

Information regarding potential future products is intended to outline our general product direction and it should not be
relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to
deliver any material, code or functionality. Information about potential future products may not be incorporated into any
contract. The development, release, and timing of any future features or functionality described for our products
remains at our sole discretion

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.
 The actual throughput or performance that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve
results similar to those stated here.

Please Note

© 2013 International Business Machines Corporation 3
3

Abstract

• Delivering a great digital experience for your customers or employees
depends on having a polished UI that meets your organization's unique
needs.

• WebSphere Portal & WCM come with a full spectrum of UI customization
options, from straightforward to sophisticated.

• In this session we will give you a flavour of that full range, starting with
powerful customization options that can be applied more simply than you
would imagine.

• At the other end of the scale, we'll explore the capabilities available if you
need go much further in developing a custom UI, taking as an example a
custom page-editing capability.

• We will look at the extension points and APIs provided by the product, the
opportunities they present and some of the different possible design
approaches to our page-editing case study.

© 2013 International Business Machines Corporation 4
4

Us

© 2013 International Business Machines Corporation 5
5

You

• Theme customization is something I know my project has to do but:
– I don’t really know how to go beyond the basics
– I know my client wants more than basic styling changes
– I feel constrained by theme customization

• In this session you will:
– Learn about the tools Portal v8 offers for theme customization and extension
– Understand the circumstances under which you might need to extend the out-of-the-

box Portal v8 theme
– Review the APIs provided by Portal v8 to manage the page layout & contents
– See some solution examples that you can use as inspiration

• But this is not:
– An HTML or Java development lesson
– Theme Customization 101

© 2013 International Business Machines Corporation 6
6

Agenda

 Introduction

 What’s the scope of what we’re talking about

 Straightforward stuff
– View and edit modes
– Easy theme customizations
– The tools Portal gives you

 Sophisticated stuff
– Client-side refresh of page changes
– Enforcing a strict editing workflow
– “Preview” mode for portlets on edited page
– Editing portlet settings in constrained environment

 Q&A

Requirements from recent projects

© 2013 International Business Machines Corporation 8
8

Everyone wants a custom theme

 Apply corporate branding

 Remove IBM “look”

 Deliver custom UI features

© 2013 International Business Machines Corporation 9

Customers ask for all sorts of things : easier stuff
we’ve met

• Apply branding
• Use Jquery instead of Dojo
• Use their choice of responsive

framework
• Optimize download size

© 2013 International Business Machines Corporation 10

Customers ask for all sorts of things : harder stuff
we’ve met

• Custom page editing experience
(e.g. strict editing workflow)

• Untemplated layout
• Client-side refresh of page

changes
• “Preview” mode for portlets on

edited page
• Editing portlet settings in

constrained environment
• Mobile editing experience

Straightforward stuff

© 2013 International Business Machines Corporation 12

Portal 8.0 theme

 One theme – called Theme 8.0
– Same theme modularization architecture from Portal 7.0.0.2
– Replaces all previously shipped out of the box themes

 Key features
– Modularization
– Server Side Aggregation support
– Portlet and iWidget support
– Static html templates: theme, skin, layout with WebDAV editing
– Dynamic-content provides means to inject server side logic into static

templates without inserting code
– Dojo 1.7

© 2013 International Business Machines Corporation 13

Portal page types

 Dynamic Pages
– “Traditional” pre-v7 portal pages, constructed of nested row and column

containers added with the Manage Pages portlet
– Portlets are added and removed in the same way

 Static Pages
– Page layout completely described with HTML / CSS / images uploaded as a

ZIP file
– Portlets embedded where desired by pseudo-CSS classes

 “Page Builder” Style Static Pages
– Page layout and portlet containers determined by a layout template
– Layout templates are HTML files, typically in the theme
– Portlets are added and removed using theme's page editing capabilities (or

custom functionality)
– Layout template markup is “cached” in page until new layout selected or

refresh forced by administrative action

© 2013 International Business Machines Corporation 14
14

Static templates

 Static templates are stored in WebDAV

 Themes
– theme.html in /fs-type1/themes/<theme-name>/

 Skins
– skin.html in /fs-type1/themes/Portal8.0/skins/<skin-name>/

 Layouts
– layout.html in /fs-type1/lthemes/Portal8.0/layout-templates/<layout-

name>/

 When editing using OOB templates, remember they are localized!
– You must edit the localized template to see changes
– Localized templates example:

• /fs-type1/themes/Portal8.0/nls/theme_en.html

© 2013 International Business Machines Corporation 15
15

 80theme_primaryNav
– mvc:res:/wps/defaultTheme80/themes/html/dynamicSpots/navigation.js
p?rootClass=wpthemePrimaryNav
%2520wpthemeLeft&startLevel=1,smartphone@,tablet@

 80theme_mobileNav
– mvc:smartphone/tablet@res:/wps/defaultTheme80/themes/html/dynamicS
pots/navigation.jsp?rootClass=wpthemeMobileNav
%2520wpthemeLeft&startLevel=1&levelsDisplayed=2

Dynamic content spots

 Dynamic spots
– Microformat defined in theme.html and other static files
–
– Parsed at runtime, href resolved and response streamed out
– Config in WP_DynamicContentSpotMappings resource environment provider

© 2013 International Business Machines Corporation 16
16

Theme.html

© 2013 International Business Machines Corporation 17
17

Skin.html

© 2013 International Business Machines Corporation 18
18

system/layouts.json – available layout templates
Layout.html

© 2013 International Business Machines Corporation 19

Place framework files

Framework CSS
and JS
•In this example
I’m using SCSS
to manage
stylesheets

My custom files
•Custom layout
templates
•Custom styles
•Fonts

© 2013 International Business Machines Corporation 20

Define theme contributions

© 2013 International Business Machines Corporation 21

3 Neat things with theme contributions

From contributions/CTC.json

© 2013 International Business Machines Corporation 22

Define a theme profile

© 2013 International Business Machines Corporation 23
23

 dstheme_primaryNav
– mvc:res:/wps/defaultTheme80/themes/html/dynamicSpots/navigation.js
p?rootClass=dsthemePrimaryNav
%2520wpthemeLeft&startLevel=1,smartphone@,tablet@

 dstheme_mobileNav
– mvc:smartphone/tablet@res:/wps/defaultTheme80/themes/html/dynamicS
pots/navigation.jsp?rootClass=dsthemeMobileNav
%2520wpthemeLeft&startLevel=1&levelsDisplayed=2

Define any dynamic content spots

 Dynamic spots
– Microformat defined in theme.html and other static files
–
– Parsed at runtime, href resolved and response streamed out
– Config in WP_DynamicContentSpotMappings resource environment provider

© 2013 International Business Machines Corporation 24

Build theme.html

© 2013 International Business Machines Corporation 25

Build layout templates

© 2013 International Business Machines Corporation 26

Register layout templates

Sophisticated stuff

© 2013 International Business Machines Corporation 28

Portal Model SPIs

 There are many model SPIs giving read access to various parts of the portal
configuration, such as:

– (Admin)PortletModel – portlets and their configuration
– ContentModel – the page hierarchy and page data (title, description, etc.)
– ContentMetaDataModel – metadata for nodes of the ContentModel
– LanguageList – supported languages within WebSphere Portal
– LayoutModel – the layout of a page
– MarkupList – supported markup languages
– NavigationModel – the navigation topology visible to a specific user
– NavigationSelectionModel – the currently selected navigation nodes
– SkinList – the list of skins
– ThemeList – the list of themes

© 2013 International Business Machines Corporation 29

Selection Model

Content Model

Layout Model

Portlet Model

Model SPI usage examples

© 2013 International Business Machines Corporation 30
© 2013 IBM Corporation

Portal Model Controller SPIs

 To make updates we use controller SPIs associated with the
models, mainly:

– ContentModelController
– LayoutModelController
– PortletModelController

 The basic steps of working with a controller are:
1) Obtain the controller from a factory
2) Obtain a modifiable instance of an artefact from that controller
3) Apply your changes to that instance
4) Commit the controller to save the changes
5) Dispose the controller, if necessary

© 2013 International Business Machines Corporation 31

Initialize

Request

Get home
interfaces from

JNDI

Get model and /
or locator from

factory

Get artefact
from model
(e.g. page)

Get controller
from factory

Get factory /
provider from

home

Get modifiable
artefact

Make changes
to artefact

Commit
controller

Dispose
controller

Model Controller usage flow

© 2013 International Business Machines Corporation 32

Portal SPIs hints and tips

 Controller factories are usually themselves obtained from a
“home” interface, looked up via JNDI

– These “homes” can be cached for the lifetime of the JVM to save
expensive JNDI lookups

 Some (but not all) controllers have a “dispose()” method that
frees up resources they have reserved

– Where present, these methods should always be called once a
controller is no longer needed for a given request (e.g. in a “finally”
block)

 May need to “re-find” newly created resources (e.g. pages, portlet
instances) before serializing their object IDs to text

© 2013 International Business Machines Corporation 33
©
201
3
IB
M
Cor
por
atio
n

Page rendering via Portal URLs

 Portal will provide the markup for the “portlet area” of a page (i.e. without
the markup generated by the theme) in response to a URL of the form:

/wps/myportal?uri=lm:oid:<page-id>

 Or the markup for a single portlet instance on page in answer to:

/wps/myportal?uri=lm:oid:<portlet-instance-id>@oid:<page-id>

© 2013 International Business Machines Corporation 34

Page updates via Portal URLs

 Portal provides a REST API for accessing and updating resources,
using URLs such as:

/wps/mycontenthandler?uri=<model>:<resource-id>

where “model” is the appropriate model abbreviation, such as: content
model (cm), navigation model (nm), layout model (lm) or portlet model
(pm)

 So, an example call to get the content (page) information for the
content root would be:

/wps/mycontenthandler?uri=cm:oid:wps.content.root

© 2013 International Business Machines Corporation 35
35

Portal REST / ATOM feeds

 Scope is a subset of Java SPI

 ContentModel
– obtain and modify the content topology and the properties of content nodes

such as pages, labels and content URLs.

 NavigationModel
– obtain the navigation topology only

 LayoutModel
– obtain and modify the layout of a page

 PortletModel
– obtain, create, update and delete portlets

 http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Remote_Model_SPI_REST_service_wp8

http://www-10.lotus.com/ldd/portalwiki.nsf/dx/Remote_Model_SPI_REST_service_wp8

Solution example

© 2013 International Business Machines Corporation 37

Solution example

 Creating a page customizer:
– Client-side refresh of page changes
– Enforcing a strict editing workflow
– “Preview” mode for portlets on edited page
– Editing portlet settings in constrained environment

© 2013 International Business Machines Corporation 38
38

Page customizer design considerations

 Editing page “in situ” vs from another page

 iframes vs “in page” rendering

 Portlets vs theme components

 Enabling editing of portlet settings

 Client-side vs server-side update operations

© 2013 International Business Machines Corporation 39

Edit page inline

/portalpage /customizer

/portalpage

Dedicated customizer
page.
Page preview in an
iframe.

/customizer

Dedicated customizer
page.
Page preview inline.

Three basic patterns

© 2013 International Business Machines Corporation 40

Edit page inline

/portalpage  Editing page "in situ"
– Put the current page into "edit mode"
– Theme components required to provide editing capabilities
– Approach used in the 8.0 out-of-the-box functionality
– Standard navigation components show that the user is still

“on” the page
– Saving and full page refresh usually required to see changes

 Editing using theme components
– Tied to the theme
– Less common and standardized programming model

Inline customizer

© 2013 International Business Machines Corporation 41

/customizer

/portalpage

Dedicated customizer
page.
Page preview in an
iframe.

 Editing page from a different page
– Typically portlet(s) on the customizer page do the editing
– Good when no WYSIWYG editing interface required (but not only then as we

will see!)
– Good control over editing workflow possible
– Allows other portlets to be present during the editing process, even though not

on the edited page
– Standard navigation components show that user is on the customizer page, not

the edited page

 iframe use
– Allows separation of “preview” of edited page from other components e.g.

portlet list
– Therefore only the iframe content will usually need to be refreshed on changes
– Edited page in iframe will need to handle e.g. drop events, so custom theme

components will probably be needed
– Links in portlets on edited page can be active and will affect only the iframe

(e.g. switching a portlet into edit mode)

 Editing using portlets
– Well-known and standardized (JSR 286) programming model
– Can be deployed on pages along with other portlets using standard portal

administration tools

Customizer page – preview in iframe

© 2013 International Business Machines Corporation 42

/customizer

Dedicated customizer
page.
Page preview inline.

 Editing page from a different page
– Typically portlet(s) on the customizer page do the editing
– Good when no WYSIWYG editing interface required (but not only then as we

will see!)
– Good control over editing workflow possible
– Allows other portlets to be present during the editing process, even though not

on the edited page
– Standard navigation components show that user is on the customizer page, not

the edited page

 No iframe use
– No custom theme components are required when editing from another page -

functionality can all be under the control of portlets
– Rendered page or portlet instance markup can be requested from portal and

embedded
– However, will usually need to save page changes before requesting
– Links in portlets on the edited page should not be live or will navigate to that

page and away from customizer page (so need a different solution for editing
portlet settings)

 Editing using portlets
– Well-known and standardized (JSR 286) programming model
– Can be deployed on pages along with other portlets using standard portal

administration tools

Customizer page – preview inline

© 2013 International Business Machines Corporation 43

Enabling editing of portlet settings

 Editing page “in situ”
– Can use standard links to edit settings, once page saved and portlets rendered
– Would need to change links (i.e. update the skin) to accommodate requirements

such as maximised edit mode or a change to the navigation display

 Editing page from a different page, preview in an iframe
– Can use standard links to edit settings, once page saved and iframe refreshed
– Link effects restricted to changing iframe content and constrained to size of iframe
– Can't accommodate requirements such as change to navigation display

 Editing page from a different page, preview rendered “in page”
– Standard links can't be used or will lose context
– Can create new links to navigate as desired

• e.g. to open the edited page with a particular portlet in edit mode and
maximised and with a different theme navigation displayed

– Need a way to get back, placing some requirements on the portlet's edit mode

© 2013 International Business Machines Corporation 44

Client-side vs server-side update operations

 Client-side updates
– Portal provides a REST API for page update operations
– REST API is a subset of the server-side SPI
– Potentially quite “chatty” in the number of requests and responses

required

 Server-side updates
– Very powerful server-side model SPI provided by portal
– Can reduce the number of requests from client-side code by providing

coarse-grained operations (e.g. through the “serveResource” method
of a portlet)

© 2013 International Business Machines Corporation 45
45

Demo page customizer solution

 To show:
– Client-side refresh of page changes
– Enforcing a strict editing workflow
– “Preview” mode for portlets on edited page
– Editing portlet settings in constrained environment

 We have selected the following design options:
– Edit the page from a different page
– In-page rendering of edited page (no iframes)

• Rendered portlets are “masked” to be read-only
– Encapsulate functionality in portlets, not theme components
– Perform updates server-side

• Page customizer portlet provides a coarse-grained “API” to the
client-side code

© 2013 International Business Machines Corporation 46
46

Demo

• Client-side refresh of page changes
• Enforcing a strict editing workflow
• “Preview” mode for portlets on edited page
• Editing portlet settings in constrained environment

© 2013 International Business Machines Corporation 47

WebSphere
Portal

Page Customizer
Portlet
(Client Side)

Page Customizer
Portlet
(Server Side)

Model SPIs REST Services

API provided through
serveResource()

Layout
Selection

Portlet
List

Portlet
Settings

Rendering

Portlet
And Page
Rendering

Portlet
Add &

Remove

Portlet
Settings

URL
Creation

Layers of the demo page customizer

© 2013 International Business Machines Corporation 48

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

Adding a portlet to a page

© 2013 International Business Machines Corporation 49

Reference slides

© 2013 International Business Machines Corporation 51

Adding a portlet to a page – calling serveResource()

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

$('.portlet-library').on('dropitem',
function (evt, data) {

var portlet = data.$el;
portlet.css('min-height', 150);
// Add a container to the portlet node.
var portletContainer = $('<div class="portlet-

container"></div>');
portlet.html(portletContainer);
// Look for a successor ID
var successor =

portlet.next('.portlet').attr('id');
// Make AJAX call to add the portlet to the page
$.get('#{pc_PortletSelection.addPortletURL}',

{portletId: data.id, targetContainerId:
portlet[0].parentNode.id, successor:
successor},"json")

.done(function(jqxhr){
...

})
);

});

© 2013 International Business Machines Corporation 52

Adding a portlet to a page – updating the model server-side

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

© 2013 International Business Machines Corporation 53

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 54

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// Get the content model
ContentModelProvider modelProvider = (ContentModelProvider)
contentModelHome.getPortletService(ContentModelProvider.class);

ContentModel<ContentNode> contentModel =
modelProvider.getContentModel(request, response);

// Get the content model controller
ContentModelControllerProvider controllerProvider =

contentControllerHome.getContentModelControllerProvider();

ContentModelController<ContentNode, ModifiableContentNode>
contentModelController =
controllerProvider.createContentModelController(contentModel);

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 55

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

Dispose
controller

// Find the current being edited page in the content model
ContentPage currentPage = (ContentPage)

contentModel.getLocator().findByID(pageId);

© 2013 International Business Machines Corporation 56

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

Dispose
controller // Get the administrative (i.e. full) portlet model and retrieve

// from it a list of portlet definitions
AdminPortletModel adminPortletModel =

portletModelProvider.getAdminPortletModel(request, response);
PortletDefinitionList<PortletDefinition> portletDefinitionList =

adminPortletModel.getPortletDefinitionList();

// Get a locator for the list and use it to find the desired portlet
Locator<PortletDefinition> portletDefinitionLocator =

portletDefinitionList.getLocator();
PortletDefinition portletDefinition = (PortletDefinition)

portletDefinitionLocator.findByID(portletId);

© 2013 International Business Machines Corporation 57

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

Dispose
controller

// Get a layout model controller for the page
LayoutModelController<LayoutNode, ModifiableLayoutNode>
layoutModelController =

contentModelController.getLayoutModelController(currentPage);

© 2013 International Business Machines Corporation 58

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

Dispose
controller

// Get a layout control creation context for the portlet we want
// (a portlet instance is a layout control for our purposes)
CreationContextBuilderFactory factory =
CreationContextBuilderFactory.getInstance();
LayoutControlCreationContext context = factory

.newLayoutControlCreationContext(portletDefinition, null);

// Create our layout control
ModifiableLayoutNode control = layoutModelController.create

(LayoutControl.class, context);

© 2013 International Business Machines Corporation 59

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// Find the layout container we want to add to in the model
Locator<LayoutNode> locator = layoutModelController.getLocator();

LayoutContainer container = (LayoutContainer) locator.findByID(containerId);

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 60

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// If a next portlet instance is provided, find it in the layout
// model
LayoutNode nextPortletInstance = null;

if (nextPortletInstanceId != null) {
nextPortletInstance = locator.findByID(nextPortletInstanceId);

}

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 61

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// Insert the new control into the layout model in the correct position
// within the container

layoutModelController.insert(control, container, nextPortletInstance);

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 62

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// Save the changes to the page
contentModelController.commit();

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 63

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

Re-find layout
control

// Re-find the new portlet instance to get a valid ID
// Note that an error is generated converting the ID of a new
// portlet instance to text if you do not do this.

LayoutNode newNode = contentModel.getLayoutModel(currentPage)
.getLocator().findByID(control.getObjectID());

Dispose
controller

© 2013 International Business Machines Corporation 64

Adding a portlet to a page – model update drill-down

Get content
model and
controller

addPortlet
request

Find page in
model

Get portlet
definition

Get layout
model

controller

Create layout
control

Find layout
container

Find successor
portlet if
specified

Insert control
relative to
successor

Commit
controller

// Dispose the controller to release resources
if (contentModelController != null) {

contentModelController.dispose();
}

Re-find layout
control

Dispose
controller

© 2013 International Business Machines Corporation 65

Adding a portlet to a page – requesting portlet markup

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

.done(function(jqxhr){
// On successful addition, parse the

response to get access to the portlet
instance ID.

var response =
$.parseJSON(jqxhr.responseText||

jqxhr);
// Update the ID of the portlet tag to

match the portlet instance ID in order
to support removal of portlets.

portlet[0].id =
response.portletInstanceId;

// Make AJAX call to retrieve rendered
output of newly added portlet instance

$.get('/wps/myportal?uri=lm:oid:'+
response.portletInstanceId+
'@oid:'+page.id)

.done(function(portlet){
...

})
})

mailto:'+response.portletInstanceId+'@oid
mailto:'+response.portletInstanceId+'@oid
mailto:'+response.portletInstanceId+'@oid

© 2013 International Business Machines Corporation 66

Adding a portlet to a page – inserting the markup

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

.done(function(portlet){
// On successful load of rendered portlet, add it
// to the container
portletContainer.html('<div class="component-

control">'+portlet+'</div>');
})

© 2013 International Business Machines Corporation 67

Adding a portlet to a page – masking the portlet contents

Drop
Portlet

Request
markup for new
portlet instance

Insert markup
into DOM

Add portlet to
page and save

Call
serveResource
for “addPortlet”

Render markup

Mask markup
and add

remove link

Request edit
mode URL

If not null, add
edit mode link

Create edit
mode URL

Client-side JavaScript

Server-side Portlet

WebSphere Portal

.always(function(j){
// Disable and mask the portlet
portlet.find('.portlet-container').each(function(){

// Disable any form elements within the
// portlet to prevent tabbing
$(this)

.find('input,textarea,button,select')

.each(function(){
$(this).prop('disabled',true);

});
// Remove any anchors within the portlet from
// the tab index
$(this).find('a').each(function(){

$(this).attr('tabindex','-1');
});
// Add an overlay to prevent mouse
// interaction with the portlet
$(this).append('<div class="overlay"></div>');

});
})

	From straightforward to sophisticated: UI customization for IBM WebSphere Portal and WCM
	Please Note
	Abstract
	Us
	You
	Agenda
	Requirements from recent projects
	Everyone wants a custom theme
	Customers ask for all sorts of things : easier stuff we’ve met
	Customers ask for all sorts of things : harder stuff we’ve met
	Straightforward stuff
	Portal 8.0 theme
	Portal page types
	Static templates
	Dynamic content spots
	Theme.html
	Skin.html
	Layout.html
	Place framework files
	Define theme contributions
	3 Neat things with theme contributions
	Define a theme profile
	Define any dynamic content spots
	Build theme.html
	Build layout templates
	Register layout templates
	Sophisticated stuff
	Portal Model SPIs
	Model SPI usage examples
	Portal Model Controller SPIs
	Model Controller usage flow
	Portal SPIs hints and tips
	Page rendering via Portal URLs
	Page updates via Portal URLs
	Portal REST / ATOM feeds
	Solution example
	Solution example
	Page customizer design considerations
	Three basic patterns
	Inline customizer
	Customizer page – preview in iframe
	Customizer page – preview inline
	Enabling editing of portlet settings
	Client-side vs server-side update operations
	Demo page customizer solution
	Demo
	Layers of the demo page customizer
	Adding a portlet to a page
	PowerPoint Presentation
	Reference slides
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

