
© 2014 IBM Corporation

Multitenant Java

© 2014 IBM Corporation

About me

§  Iain Lewis

§  QA Engineer, IBM Java Technology Center,
IBM Hursley, U.K.

§  13 years experience developing, testing
and deploying Java SDKs

§  Currently testing Multitenancy on IBM Java
7 R1

§  Contact info
–  iain_lewis@uk.ibm.com

§  Presenting on behalf of the development
team

2

© 2014 IBM Corporation

This session will help you to:

§ Understand what multitenancy is

§ Understand why it is important

§ Find out what it can do for you

§ Discover IBM's multitenancy technology in Java 7 R1

© 2014 IBM Corporation 21 March 2014

Multitenancy == Simplification

■  Multitenancy refers to a principle in software architecture where a
single instance of the software runs on a server, serving multiple
client organizations (tenants).

■  Multitenancy is contrasted with a multi-instance architecture where
separate software instances (or hardware systems) are set up for
different client organizations.

■  With a multitenant architecture, a software application is designed
to virtually partition its data and configuration, and each client
organization works with a customized virtual application instance.

 Thanks to

© 2014 IBM Corporation 21 March 2014

Don’t Repeat Yourself: Simplify to save time & $$$

“Every piece of knowledge must have a
single, unambiguous, authoritative
representation within a system”
 Pragmatic Programmer (Hunt & Thomas)

(or: copy-and-paste encourages problems)

http://www.instructables.com/id/How-To-Create-A-LEGO-Star-Wars-Clone-Army/

© 2014 IBM Corporation

Background - Key Trends

§ Share more, can do this at different levels in the stack:
– Hardware partitioning
– Hypervisor
– Operating System
– Containers
– Runtime
– Middleware
– Application

§ Continual drive to improve
– reduce overhead at each level (resource usage, startup)
– improve isolation at each level
– more sharing as we move down the stack

§ Multitenant Java moves us down one layer in the stack

Virtualization – “make it appear as you
have dedicated environment/container”

Multitenancy – “share an environment
with more than 1 tenant”

© 2014 IBM Corporation 7

Hardware Virtualization

§ Hypervisors run multiple applications side-by-side safely
– Examples: VMware, kvm, PowerVM, zVM

§ Advantages
– Capture idle CPU cycles
– Automatic de-duplication (RAM)
– Ability to meter and shift resource toward demand
– No need to change applications (tenants)

Hypervisor

Hardware

tenant tenant tenant tenant

© 2014 IBM Corporation 8

JVM Virtualization

§ Hypervisors JVMs can run multiple applications side-by-side safely
§ Advantages

– Capture idle CPU cycles
– Automatic de-duplication (ability to share Java artifacts)
– Ability to meter and shift resource toward demand
– No need to change tenant applications

Hypervsisor

Hardware

tenant tenant tenant tenant

Java VM

Operating System

© 2014 IBM Corporation

JVM Multitenancy: What is it ?

§ What we’re building: basically a ‘virtual JVM’
–  Transparent multitenancy for 100% pure Java applications
–  Opt-in via –Xmt option
–  Shared JVM (javad) process hosts all tenants with in/out/err

redirection to launcher
–  JVM-enforced resource controls on Heap, Threads, I/O, and CPU
–  Will behave exactly like a dedicated JVM, only smaller

© 2014 IBM Corporation

JVM Multitenancy: What do I get?

§ Tech preview in the Java 7.1 release:
– Full platform evaluation Linux-x86, z/OS, AIX, zLinux, pLinux

§ Download from:
– https://www.ibm.com/developerworks/java/jdk/linux/download.html

§ Performance Goals (work in progress)
–  Lower memory usage (classes and JVM internal data structures are

shared)
–  10x density improvement on “Hello World” style applications
–  3x density improvement on larger OSGi applications (Liberty)
–  Less than 10% throughput degradation on TradeLite
–  Quicker startups: JVM is already up and running
–  Better performance from JIT'd code

© 2014 IBM Corporation 11

Multitenancy: Basics – How does it work

§  A standard java invocation creates a dedicated (non-shared) JVM in each process

java1 java2 java3

JVM JVM JVM

© 2014 IBM Corporation 21 March 2014

Cost of Dedicated JVM

Java Heap consumes 100’s of MB of memory
– Heap objects cannot be shared between JVMs

Just-in-Time Compiler consumes 10’s of MB of memory

– Generated code is private and big
– Generated code is expensive to produce

•  Steals time from application

JVM Control structures and threads
–  Heap control structures
–  Multiple compilation threads
–  Multiple GC helper threads

© 2014 IBM Corporation 13

Multitenancy: Basics – How does it work

§  A standard java invocation creates a dedicated (non-shared) JVM in each process

§  IBM's Multitenant JVM puts a lightweight 'proxy' JVM in each java invocation. The 'proxy'
knows how to communicate with a shared JVM daemon called javad.

java1 java2 java3

JVM JVM JVM

java1
proxy

java2
proxy

java3
proxy

javad

JVM

§  javad is launched and shuts
down automatically

§  no changes required to the
application

§  javad process is where
aggressive sharing of runtime
artifacts happens

© 2014 IBM Corporation 21 March 2014

Cost of Virtualized JVM

l 1 Heap – no duplication of control structures, helper
threads

l 1 JIT – code is compiled once, less memory is used, less
CPU used by the JIT

l  Shared Classes – Java SDK classes are shared, less
memory consumed

l  Quicker JVM startup – when a tenant connects, the JVM is
already running

l  Per tenant instance data is not shared – isolated on the
heap by the JVM

l Performance hit for virtualization

© 2014 IBM Corporation

Multitenancy: Getting started

§  Multitenancy is an opt-in feature of IBM JDKs for Java 8 (tech preview 7.1 4Q2013)
–  Just add the -Xmt command-line option to opt-in
–  Enables a model very similar to JSR-121: Isolates but doesn't require any new API

§  Daemon startup and communications is handled automatically by the 'java' launcher
– One daemon per user to keep permissions aligned between launcher & daemon
–  Launcher:daemon rendezvous accomplished using advertisement files

§  Standard in / out / error streams are connected to daemon
–  e.g. System.out.println() in the daemon works as expected
–  JVM will multicast messages like dump events to all connected tenants

§  Most standard JVM options are used as-is
–  -classpath / -jar entries
–  -Dname=value system properties

§  Select JVM options are mapped to tenant-specific values
–  -Xmx applies to the tenant being launched
–  See documentation for details

§  Daemon-wide options are stored in JAVA_HOME/bin/javad.options file

§  Documentation available at:
§  http://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.71.doc/

diag/preface/changes_71/overview_mt_evaluation.html

© 2014 IBM Corporation

Multitenant JDK: Launch your application

§  Opt-in to multitenancy by adding –Xmt

© 2014 IBM Corporation

Multitenant JDK: Register with javad daemon

§  JVM will locate/start daemon automatically

javad

locate

© 2014 IBM Corporation

Multitenant JDK: Create a new tenant

§  New tenant created inside the javad daemon

javad

Tenant1

© 2014 IBM Corporation

Multitenant JDK: Create a second tenant

§  New tenant created inside the javad daemon

javad

Tenant1

Tenant2

One copy of common code
lives in the javad process.

Most runtime structures

are shared.

© 2014 IBM Corporation 20

A peek under the covers: Separating State

§ Static Variables are a problem for sharing

§ Consider use of System.out in code we want to share below

© 2014 IBM Corporation 21

A peek under the covers: Separating State

getstatic does 2 things
1.  Triggers class initialization on first contact

–  Notable: Each ‘tenant’ needs to do this
2.  Resolves a name (out) to a storage location and reads from it

–  Notable : Each tenant needs dedicated storage

© 2014 IBM Corporation

Multitenancy: Controlling Resource Consumption

§ An opportunity!

§ Problem – multiple applications on a single server, one misbehaved app
can break all the rest

§ Allow the JVM to limit resource consumption of your tenants

© 2014 IBM Corporation

Multitenancy: Controlling Resource Consumption

§  The second key feature for safe multitenancy is resource control
– Based on JSR-284 for resource configuration management
– Internally uses a token-bucket algorithm commonly applied to

network traffic shaping

§  Resources that can be throttled:
– CPU & Threads
– Heap memory consumption
– Disk and Network I/O

© 2014 IBM Corporation

Multitenancy: Controlling Resource Consumption

§  Throttling is controlled using a new -Xlimit command-line option
– General form is: -Xlimit:<resource_name>=<min_limit>-
<max_limit>

– <min_limit>: Specifies the minimum amount of the resource that
must be available for the tenant to start. This value is optional.

– <max_limit>: Specifies the maximum amount of the resource that
the tenant is allowed to use.

§  Examples:
– –Xlimit:cpu=10-30

•  requires a 10% share of the processor to start and limits
processor consumption to 30%.

– –Xlimit:threads=5-20
•  requires a minimum reservation of five threads and an upper

limit of 20
– –Xmx20m

•  Limit heap consumption to 20 megabytes

© 2014 IBM Corporation

Multitenancy – When and Where?

§ Advantages

§ Disadvantages

§ Possible use cases

© 2014 IBM Corporation

Multitenancy Sweet spot

§  How low can you go?
§  Simple ('Hello World') applications showing per-tenant sizes of ~170 KB of heap
§  This equates to a 5-6x more applications running on the same hardware

§  Performance
§  Target is 10% overhead, still a work in progress

§  Second-run start-up times are significantly better
§  Faster because the JVM is already up and running

§  Application Sweet spot:
§ One of:

•  Relatively large class:heap ratio (JRuby and other JVM languages)
•  Require fast startup: run-and-done / batch
•  Workloads with varying busy:idle cycles – MT JDK is better at shifting resource

between tenants
§  100% pure Java Code

© 2014 IBM Corporation

Multitenancy: Caveats & Limitations

§  Main Limitations of the MT Model

JNI Natives
– The operating system allows the shared JVM process to load only one copy

of a shared library. Only native libraries present on the bootclasspath of the
JVM usable.

JVMTI
– Because debugging and profiling activities impact all tenants that share the

JVM daemon process, these features are not supported in the multitenant
JVM process model. Note: we do have per-tenant -javaagent: support.

GUI programs
– Libraries such as the Standard Widget Toolkit (SWT) are not supported in the

multitenant JVM process model because the libraries maintain a global state
in the native layer.

–  Full list available at:
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.71.doc/
user/mt_limitations.html

© 2014 IBM Corporation

Use Cases

§ MT-UC1 – Small Application Consolidation

§ MT-UC2 – Run and Done

§ MT-UC3 – Resource Time Sharing

§ MT-UC4 – Resource Limiting based on SLA

§ MT-UC5 – Resource Limiting for Safety

§ MT-UC6 – Memory Cost Sensitive Environments

§ MT-UC7 – Health Monitoring and Recovery

© 2014 IBM Corporation 21 March 2014

MT-UC1 – Small Application Consolidation

§  Key attributes
–  Customer has multiple small applications
–  Non EE deployment OR more isolation needed between

applications than provided by EE deployment OR need per
application Middleware instances (ex liberty) due to
management/operational requirements

–  Application memory/CPU overhead low compared to JVM
overhead

§  MT Benefit:
–  Lower total footprint/memory requirements

•  Limit overhead to that of 1 JVM versus many
•  Limit heap to 1 shared head heap

© 2014 IBM Corporation 21 March 2014

MT-UC2 – Run and Done

§  Key attributes
–  Short running application with multiple invocations
–  Startup/Shutdown dominates run time
–  Need Isolation between invocations
–  Examples: Ant scripts, compilation with javac, IMS, Z Batch, JRuby

scripts, Jython scripts etc.

§  MT Benefit:
–  Faster startup/shutdown

•  Avoid full JVM startup/shutdown for each invocation

© 2014 IBM Corporation 21 March 2014

MT-UC3 – Resource Time Sharing

§  Key attributes
–  Customer has multiple applications that have load at different times
–  Non EE deployment OR more isolation needed between applications

than provided by EE deployment OR need per application
Middleware instances (ex liberty) due to management/operational
requirements

§  MT Benefit:
–  Lower total footprint/memory requirements

•  Limit overhead to that of 1 JVM versus many
•  Shared heap sized to match concurrent maximum instead of sum

of all application maximums

© 2014 IBM Corporation 21 March 2014

MT-UC4 – Resource Limiting based on SLA

§  Key attributes
–  Customer has multiple applications sharing same OS instance
–  Some applications have higher SLA levels than others

§  MT Benefit:
–  Able to control CPU, Network IO , File IO resource usage to favor

application with higher SLA

© 2014 IBM Corporation 21 March 2014

MT-UC5 – Resource Limiting for Safety

§  Key attributes
–  Customer has multiple applications sharing same OS instance
–  Some applications un-trusted or buggy, concern they will affect

performance of other applications.

§  MT Benefit:
–  Able to control CPU, Network IO , File IO resource usage to limit

maximum impact of “runaway” application

© 2014 IBM Corporation 21 March 2014

MT-UC6 – Memory Cost Sensitive Environments

§  Key attributes
–  Memory is costly for environment (e.g. Legacy hardware)
–  Shares attributes of one of earlier use cases

§  MT Benefits
–  Footprint savings more compelling than in other environments.

© 2014 IBM Corporation

MT-UC7 – Health monitoring and recovery

§ Key attributes
– Health monitoring/recovery runs in JVM with application
– Application failures should not affect health monitoring (ex OOM on

app)

§ MT Benefits
– Ability to ensure minimum amount of memory available to health

monitoring/recovery components

© 2014 IBM Corporation

Demo - Scenario

§ JVM Health monitoring
– Want heartbeat to track “liveness” of server
– Need this to run reliably as long as application is still running
– Requires some memory and cpu to generate heartbeat
– Simulate in demo with thread that prints out “heartbeat” at 2 second

interval

§ Application Transactions
–  Transactions submitted from external system
–  Use variable amount of cpu depending on request
–  If transaction uses too much memory it can starve heartbeat thread
– Simulate with thread(s) that uses as much cpu as they can

© 2014 IBM Corporation

Demo – what happens today

§  Run HeartbeatAndCPUHog

§  ./java -cp demo.jar HeartbeatAndCPUHog

§  Shows running both heartbeat thread and transaction in regular jvm

§  Note that times between heartbeat messages stretch out once cpu hog starts

© 2014 IBM Corporation

Demo with MT

§  ./java -Xmt -cp demo.jar Heartbeat
in one window

§  ./java -Xlimit:cpu=50 -Xmt -cp
demo.jar CPUHog in another
window

§  Top in third window

§  Note that heartbeat remains
consistent even after hog starts

§  Top shows that cpu varies, but
average looks to be around 50%

§  You might have to play with limit
depending on your machine as
heartbeat task does use
reasonable amount of cpu to show
affect.

© 2014 IBM Corporation 21 March 2014

IBM Knowledge Center
The new home for IBM product documentation

A one-stop shop for IBM technical publications; replaces Information Centers
Create collections that apply to you
Collaborate with IBM and your colleagues; share comments and rate pages

Want to learn more about IBM Knowledge Center?

Come and visit the stand
Look for representatives wearing these badges

IBM Knowledge Center collections that might interest you:

IBM SDK, Java Technology Edition http://ibm.biz/javasdkdocs
IBM Monitoring and Diagnostic Tools for Java http://ibm.biz/javasdktoolsdocs
IBM WebSphere Real Time http://ibm.biz/wrtdocs

© 2014 IBM Corporation

Key Links and Contacts

§  Download
– https://www.ibm.com/developerworks/java/jdk/linux/download.html

§  Documentation
§  http://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.

71.doc/diag/preface/changes_71/overview_mt_evaluation.html

§  Contacts for feedback
§  Iain Lewis (iain_lewis@uk.ibm.com)
§ Michael Dawson (michael_dawson@ca.ibm.com)

