Customer POC Experience with WebSphere eXtreme Scale

eXtreme Scale caching alternatives for
Bank ATM Offerings

© 2011 IBM Corporation

Business and application challenges where elastic caching applies

Customer POC Context and Goals
Customer POC Scenario

Problem Statement

Solution Requirements

Solutions and Alternatives for consideration

Demonstration of one of the alternatives
In-line cache
Write-Behind loader to backend database
Pre-load cache from database

© 2011 IBM Corporation

WebSphere eXtreme Scale V8.6 Redbook

IBM, WebSphere,,

WebSphere eXtreme Scale V8.6
Key Concepts and Usage Scenarios

Introduction to elastic caching

Typical application scenarios

Deployment options

Jonathan Marshall
John Pape

Kristi Peterson
Greg Reid

Fabio Santos B. da Silva
Federico Senese

ibm.com/redbooks Red bOOks

© 2011 IBM Corporation

Business and Application challenges

WXS elastic caching offers solutions for various

business and application challenges

* Http Session
* Application s

|

Cache
ide cache

* Application Inline cache

Business challenges

Scalability issues
* Adding hardware not easy
* Database already maximum
configuration available
* Licensing cost

Large data volumes
+ 5x rraffic surges during product
launches, sales
* JVM heap caches impacting
application perfformance

Fault tolerance
* Ensure data integrity

Data redundancy
* Maintain data reliability in case of
failover

Elastic Caching

* Virtually unlimited
capacity

« Scales to 100s of
servers without
slowdown

* Dynamically add
more servers as
required

* Automatic
mechanisms to avert
system failure

* Replication to avoid

data loss

Application challenges

HTTP session or

Application state
* Persistence
+ Consistency
* Capacity
* Fault blerance

Dynacache
* One copy kept in synch
* One copy b invalidate
* Free up JVM heap for
application needs
* Reduce GC overhead

SOA
* Reduce load on backend
systems
* Improve response time

XTP

* Parallel data processing
+ Data collocated with logic

© 2011 IBM Corporation

The application state store and side cache scenarios are typically simple to
implement and are widely used

The in-line cache and Extreme Transaction Processing scenarios are more

advanced use cases

« Typically involves some code running on the grid itself
« Agents / loaders, etc

» These scenarios apply only to WebSphere eXtreme Scale, and not to the WebSphere
DataPower XC10 Appliance

Scenario Complexity Application change System of
required record

Application state store Simple Depends Grid

Side cache Simple Depends Back end

In-line cache Medium Yes Grid

Extreme transaction processing | Medium to advanced | Yes Grid

© 2011 IBM Corporation

Context and Goals

« Customer is modernizing
its solution of Transaction _ _
Offerings for ATM banking * The new solution will
services employ the mechanims of a
. _— . distributed cache using
The existing proprietary IBM eXtreme Scale for

caching architecture is .
difficul’?to maintain improved performance,
availability and

« Existing cache solution is maintenability of the
not sharable between offerings
applications and runs in the
application JVM.

6 © 2011 IBM Corporation

Retail Bank

— [Offering Service] —
— [Banking Transaction] —

Financial Institute

User inserts ATM card from their financial institution into the ATM

Offering Service at “Retail Bank” reads card information and contacts the “Financial
Institution”

= Obtains the specific “Offerings” available for the card holder on the account
= Such as: Withdrawal, funds transfer, acct balance, etc

Offering Service applies the “Offering Parameters” required by the financial institution
= Such as maximum daily withdrawal limit

Offering Service renders the offerings to the ATM user

From the ATM, the user initiates one of the available banking transactions from the list of
offerings presented, as obtained from the card holders financial institution

Data to be cached in the Banking ATM Offering Scenario
1. Financial Institution data
2. Offering data

3. Offering Parameter data ©2011 IBM Corporation

= Data is configuration tables from a back-end database
= Basic Information used for the business rules
= Offering application only “reads” the data

= Low refresh rate (Less that 1 time per day)

= Qutside applications are used to update the database tables via web application as
changes are required, such as:

= Offering Parameter changes
= Offering is added or removed from a financial Institution

= Existing Cached data size is relatively small, But...........
= We will discuss the problem statement

Data Mapping

= Each Financial Institution has many Offerings

= Each Offering can have one to many Offering parameters

= Ordering Precedence data is used to appropriately order query results

Financial Institution » Offering —»| Offering Parameters

1.m 1 Ordering-Precedence

8 © 2011 IBM Corporation

Problem Statement

Proprietary cache implementation

Local cache in every application space (Shares JVM heap with application)

= Cache logic is difficult to maintain Application
Cache
. . . JDBC
Local cache in every application space cMP
. \ /

No cache sharing

There are 15 applications, each with its own copy of the cache data
Example: 40 MB of cache is now 40 MB * 15 Applications = 600 MB

Application Architecture requires three (3) variants of each of the 15
applications based on routing to specific financial institutions

Example: 40 MB cache is now 600 Mb * 3 variants of application = 1.8 GB

[Cistoner | [Ustener |
1°“°"""': m}.
—— e g AL A e - Y m—— _u ; L} : e
BN [B2 T waan/ 0 26 1 s2an -~ s BN - [B B2 B2eH B2eH_ S sn -~ s
Agma Basext +Consul | Depoyit Payment Private 1 Transter Withdraw Agma Balext ~Consur Deponit ayment Private ™ ransfer Withdraw
J L L > L S [¢ i ~ J £ J L L L / .4) J L J L
> » 14 h | A e r —~ — 2 omeh— [S — N
RComp RComp RComp RComp RComp RComp RComp RComp RCemp RComp
Adesin Balaxt Consult Payment Withdeaw e Admin Datext Conssit Paymant Withdraw T
Listoner R
| Dispatcher . Uistonar
/B B Dispatcher
e o Do TN TN S . ——
B24H - M | g T w2an/ \ 24 e % s -~ s LA
Admin || Salext {Conun | | Owpogh | w‘ {, Privete™; Transter | | Withdraw 8244 »
. - # oy R T . - .
RComp RComp RComp RComp RComp System
Admin L Consun Payment Withdeaw

© 2011 IBM Corporation

Problem Statement

= 12 WebSphere Servers supporting the application

= Each server contains the 1.8 GB of cache
= Example: 40 MB cache is now 1.8 GB * 12 JVms = 12.6 GB

= Cache refresh is performed through
the reading of all records of the entity

= =9
= EEE B EE EEEE ENEEE
FEEEEEE FEE S EE
= =2
EE T RN -
EEEEEEE g
N SR [] e
B B 74 N\
(
: was X | WAS WAS
20 i e
T~~~ -~~~ ° _]
(
: WAS WAS WAS
I —
I S —
S TS
10 T T

that has changed
* Updating all of the caches in each
JVM results in minutes of
unavailability
N _
Cluster 1
WAS WAS WAS
____ === """ """
Cluster 2
WAS WAS WAS
——— ==

N e/

1

The adoption of a distributed cache will be designed taking into consideration
the following requirements:

« Coding simplification of the cache implementation
- Compared to existing proprietary cache implementation

« Cache sharing between applications and JVMs
» Reliability and security for cache operations (insert, update, and delete, and queries)

* Immediate availability of the cache to applications, even if applications or application
servers are restarted

© 2011 IBM Corporation

» Option 1: Side Cache using ObjectMap API

Pros:
« Fairly easy to implement
« Code changes are not exhaustive and typically contained in the Data Access layer of the
application
« Cache preloading can be straight forward and efficient
« Application can continue to function if the cache is out of service
« Solution could also be implemented using DataPower XC10 appliance

Cons
» Does not support synchronization of cache changes to DB at runtime

12 © 2011 IBM Corporation

Offload Redundant Processing : Side Cache

B~ W N

13

Applications check to see if WebSphere eXtreme Scale contains the desired data.

If the data is there, the data is returned to the caller.

If the data is not there, the data is retrieved from the back-end

Insert the data into WebSphere eXtreme Scale so that the next request can use the cached copy.

Request

Application

Cache Access

Data Access

Read >

EIS

Elastic Caching

Figure 3-2 Side cache scenario

w 2011 IBM Corporation

» Option 2: In-Line Cache and (Optional) extreme processing for queries and
WXS agents

Pros:
« Custom loaders can be developed to keep the database synchronized with cache updates
« Option to preload the cache upon initialization of the backing maps
« (Optional) Agents can be developed for parallel query and cache updates across partitions

Cons
« Longer term investment than the Side cache scenario
« Additional development time required build the WXS solution with WXS agents and loader
plug-ins
» Application must use WXS APIs to interact with the cache as the “Loader” is responsible
for interaction with the database
« Solution will only run on Extreme Scale, not Datapower XC10

14 © 2011 IBM Corporation

Offload Redundant Processing : In-line cache with Write-Behind

= Changes are written to the back-end asynchronously
— A write-behind cache
= Back-end load is significantly reduced as there are fewer but larger transactions

— WXS configuration is used to determine when to perform the batch updates to the
database, based on elapsed time / number of transactions since last buffering period

= Back-end availability has no impact on application availability

T s S S
map.update(key1, value2); <-§1, _
Application logic: session.commit(); @) DR
Application S:E;m
1. Look in WXS cache for object 28
2. Work with the object that was returned from the Key [Value
WSX grid
« Data could have come from the cache or 3’5?.5"?;&“;3
the database, WXS loader takes care of JVM Grid Client
that (3)09)
« The client does not interact with the [}T
database! ey [Value

é“' | Loader ‘—‘:‘,“’?,__ Far Cache
A1) + (10— BackingMap

Primary Shard

Grid Container

15 JVIM

Inline Cache

= Whether the data is in the cache or not becomes transparent to the application

— the application sees an extremely fast back-end access (assuming the cache is large
enough to provide a good hit rate

= An inline cache requires the implementation of a “Loader”
— Prebuilt “JPA” loaders ship with WXS
— Or develop your own “Custom” loader using the WXS Loader interface

Business Logic

Grid Client

Grid Container

L Loader
1 JPA Custom

Data Access Logic

Application

EIS]

16 © 2011 IBM Corporation

= In-line cache scenario using custom JDBC loader plug-in

— Requirement: Customer would like to allow real-time cache updates and have the cache
updates synchronized to the backend database

— Currently, updates are scheduled each evening and the cache | reloaded

= Pre-load the cache with all of the data from the database
— Requirements:

o The application performance cannot tolerate database access latency on cache
misses

= Load the cache using data de-normalization and data partitioning based on
usage patterns in the applications
— Requirements:

- Efficient access of the cached data in the IMDG (In Memory data grid)

o Efficient use of the WXS query API can be accomplished if related graph data is
co-located into the same partition as it’ s root object

o More efficient queries can be developed if certain data from database tables are
de-normalized to avoid expensive “join” operations

o Can implement cache queries using a single partition query to support the use
case scenarios

17 © 2011 IBM Corporation

Example: POC primary queries to support

Query all Offerings associated with the Financial Entity, ordered by precedence

|
SELECT o.id, o.name, o.active, o.wheretypeid, o.whotypeid, o.financialentityid,
wo.precedence "whoPrecedence",
we.precedence "wherePrecedence”
FROM T _OFFERING o, T WHOTYPE wo, T WHERETYPE we

WHERE o.wheretypeid = we.id

AND o.whotypeid = wo.id

AND o.financialentityid = ?

ORDER BY wo.precedence, we.precedence

ID s [NAME s|ACTVE & |WHERETYPEIDS![WHOTYPEID 4 | FINANCIALENTITYIDS | whoPrecedences | wherePrecedences
1 3 111 2 0
2 2 111 1 1

-

Offering 1 1
Offering 2 1

)

=Example above shows simple data denormaliztion option
= Combine data from the Offering, Whotype and WhereType tables into a single

cacheable object
= Eliminates the need to use ‘joins’ in the WXS GRID query to obtain the cached data

=Precedence columns used specifically to order the query ResultSet by precedence
=Two very small tables containing 3 or 4 rows

What other technique could be used to load the grid to EFFICIENTLY query the cached data
using ORDER BY o.whoType.precedence, o.whereType.precedence? Explore ne(g<2t0!11 M Gorporaton

= Define a viable data model
= A partitioned environment requires special considerations for holding object graphs

= Should the entire object graph instance be held in one partition?
= Considerations include:
= How imbalanced will the grid partitions become?
= How can we place data into specific partitions based on a parent object?

= Should the data be denormalized to combine fields from child database tables
into a single WXS model object?

= Considerations include:
= Size of the grid will grow faster. Is that an issue?
= How does the data get properly updated back to the database?

= Should some Objects just be loaded into all partitions?
= Considerations include:
= How many records of data need to be stored in each partition?

= Could be good solution if the size is small, say storing US states, or the WhoType
and WhereType data from our example POC scenario

= How can you duplicate data into all partitions?
= What does this mean for partition routing to access the data?

19 © 2011 IBM Corporation

T _FINANCIALENTITY T _OFFERING
Database Tables T POV

v

FinancialEntity Class

Offering Class

Int id; Int offerld
String name; Int feld;
String name;
POV Class
Int povld;
Int gfferld; Data Model
String value;

Requires custom POJOs to be developed
as the Key Classes for Offering and POV

* Implements the WXS
PartitionsableKey interface

« Generates a HASH for the Offering
and POV identical to the Master
“FinancialEntity” object

20

AN

Co-locate Master and child objects in
same partition

* FinancialEntity key = id

« Offering Key is a composite POJO that
includes the FinancialEntity key “id” and
the Offering key “offerld”

* POV Key is a composite POJO that
includes the OfferingKey POJO and the
POV key “povid”

FinancialEntity Map Offering Map
aauton Key Partition Key
P01 111
" P01 |{id=111,0fferld=1}
{id=111,0fferld=2)
POV Map
Partition Key WXS Grld
P01 | {id=111,offerld=1, povid=3}

{id=111,offerld=1, povid=5}

© 2011 IBM Corporation

OfferingKey POJO class
= |mplements PartitionableKey from WXS
= WXS calls the ibmGetPartition() method

= |t returns the integer value of the Financial Entity
= So the Offering will hash to the same value as its parent Financial Entity

OfferingKey Code example

In the Loader code, create a new instance of

public class TOfferingKey implements PartitionableKey { the TOfferingKey
: : : = Pass in the id of the Financial Entity
:2{ gggggigﬁiyﬁtit Kev: and the id of the Offering on the
YREY, constructor

public TOfferingKey(int offringKey, int financialEntityKey) {

Put the entry in the WXS map using the

_ hashed Key
super();
this.offringKey = offringKey;
this.financialEntityKey = financialEntityKey;
} Loader Code example
public Object ibmGetPartition() { TOfferingKey offeringKey = new
return Integer.valueOf(financialEntityKey), TOfferingKey(offeringid, feid);

}

map.put(offeringKey, toffering);

21 © 2011 IBM Corporation

Graph of objects loaded into the same partition for efficient single partition query

Map: TFinancialentity

Map: TOffering
Enter a regular expression to find keys in the map. After searching for ke
'All keys matching query' to invalidate an entire query regardless of the nt
Enter a regular expression to find keys in the map. After searching for keys, use the
'All keys matching query' to invalidate an entire query regardless of the number of m

E Q| ¥
Regular expression help
. U
v Invalidate v Clear Map "] Show valu Regular expression help
I T B Fartition v Invalidate ~ ~ ClearMap || Show values
[21 0 preseeeee 1
SR 1 | Key Partition
Y 3 | l'"|"'|"“ {offringKey=54, financialEntityKey=31} 3
O 25 4] {offringKey=52, financialEntityKey=25} 4
- 5 [l {offringKey=48, financialEntityKey=33} 5
O 13 6 O {offringKey=49, financialEntityKey=33} 5
[71 {offringKey=50, financialEntityKey=33} 5
[[] {offringKey=55, financialEntityKey=33} 5
O {offringKey=56, financialEntityKey=33} 5
[{offringKey=57, financialEntityKey=33} 5
M {offringKey=58, financialEntityKey=33} 5

SELECT o FROM TOffering o WHERE o.feld = ?1

The query can be executed in a single partition to obtain ALL related offerings for a
given financial institution

© 2011 IBM Corporation

Graph of objects loaded into the same partition for efficient single partition query

Map: TFinancialentity

Enter a regular expression to find keys in the map. After searching for ke
'All keys matching query' to invalidate an entire query regardless of the nt

3 Q|
Regular expression help
v Invalidate v Clear Map "] Show valu
| Key Partition

21 0

] 1 1
3 3

0 25 4

[33 5

] 13 6

Map: TParameterofferingvalue

Enter a regular expression to find keys in the map. After searching for keys, use the invalidate button to
'All keys matching query' to invalidate an entire query regardless of the number of matching keys.

3 Q|| 3
Regular expression help
v Invalidate ¥ Clear Map "] Show values
Key Partition

I:I {povKey=562, offeringKey={offringKey=48, financialEntityKey=33}} 5
M {povKey=563, offeringKey={offringKey=48, financialEntityKey=33}} 5
] {povKey=564, offeringKey={offringKey=49, financialEntityKey=33}} 5
I:I {povKey=565, offeringKey={offringKey=49, financialEntityKey=33}} 5
I:I {povKey=579, offeringKey={offringKey=48, financialEntityKey=33}} 5
M {povKey=586, offeringKey={offringKey=48, financialEntityKey=33}} 5
] {povKey=577, offeringKey={offringKey=49, financialEntityKey=33}} 5
|:| {povKey=566, offeringKey={offringKey=50, financialEntityKey=33}} 5
I:I {povKey=567, offeringKey={offringKey=50, financialEntityKey=33}} 5

SELECT p FROM TParameterOfferingValue p WHERE p.offeringid = ?1

The POV query can be executed in a single partition to obtain ALL related POVs for

a given Offering

23

© 2011 IBM Corporation

Denormalize the data model

public class TOffering implements Serializable {
private static final long serialVersionUID = 1L;
private int feld;
private int offerId;
private String name;
private String active;
private int wheretypeid;

private int whotypeid;

public class TWhotype implements Serializable {
private static final long serialVersionUID = 1L;

private int id;
private String label;
private String name;

private int precedence;

24

Original Offering class
Fields map to the columns in the database table

For queries of child objects to work, they must be
in the same partition

For queries that use ORDER BY to work, the
objects used for the ordering must be in the same
partition

An implicit JOIN is incurred to obtain the
whotype.precedence and wheretype.precedence

= Example SQL: Similar WXS Query is required to
obtain from the cache:

SELECT

FROM T _OFFERING o, T WHOTYPE wo,
T WHERETYPE we

WHERE o.wheretypeid = we.id

AND o.whotypeid = wo.id

AND o.financialentityid = ?

ORDER BY wo.precedence, we.precedence

© 2011 IBM Corporation

Denormalize the data model

= New Offering class that has been
denormalized

public class TOffering implements Serializable {

private i

= The Offering class contains fields for the
precedence of the whotype and wheretype

Considerations:

= The WhoType and WhereType objects no longer
need to be in any specific partition

= When pre-loading the grid, or in a side cache
scenario, an appropriate SQL query to pull the
data from the DB to be placed into the Offering
public class TOffering implements Serializable { class when added to the cache.

private int offer

private String name;

private

private int wheretypeid;

int whotypeid;

private static final long serialVersionUID = 1L;

private TOfferingKey tofferingKey; = Let’s see how this SQL looks (From preloader)

SELECT O.*,P.ID AS POVID, wheret.precedence as WHEREP,
whot.precedence as WHOP FROM KEVINLP.T_OFFERING O,
KEVINLP.T_PARAMETEROFFERINGVALUE P, T WHERETYPE
wheret, T WHOTYPE whot WHERE O.ID = P.OFFERINGID and
O.wheretypeid=wheret.id and O.whotypeid=whot.id

private int povId;

private int feld;

private int offerId;

private String name;

private int whoTypePrecedence;
ID % | NAME & | ACTIVE % | FINANCIALENTITYID% | POVID $| WHEREP ¢ | WHOP
: : - 62|0S 0001 _IF ... | 1 654 3 2
private int whereTypePrecedence; oS i E. i o 3)
62|0S 0001 _IF ... | 1 659 3 2
62|0S 0001 IF ... |1 1 660 3 2

25 —@-2041-Bivi-Corporatiomr—

Denormalize the data model

public class TOffering implements Serializable {

26

private static final long serialVersionUID = 1L;

private
private
private
private

private

TOfferingKey tofferingKey;
int povId;

int feld;

int offerld;

String name;

private

private

int whoTypePrecedence;

int whereTypePrecedence;

for (TOffering toffering : tofferings) {

//System.out.println("FE ID = "
//System.out.println("POV ID = "
System.out.println("OFFERING ID = "

Retrieving the data from the Offering object

The new fields can be retrieved from the Offering
class as shown below using the getter() methods
on the Offering class.

Or used in an ORDER BY Clause in a WXS
query
** If the query required to run on multiple

partitions, the client must order (Sort) the results
form the partitions.

Another alternative is to load the Whotype and
Wheretype objects into ALL partitions in the grid

= Then the queries that use these objects will
work from any partition

+ toffering.getFeld());
+ toffering.getPovId());
+ toffering.getOfferId());

System.out.println("OFFERING Name = " + toffering.getName());

//TODO KLP added to get the precedence of the whotype and wheretype of teh offering
System.out.println("OFFERING Whotype Precedence
System.out.println("OFFERING Wheretype Precedence

" + toffering.getWhoTypePrecedence());
" + toffering.getWhereTypePrecedence());

© 2011 IBM Corporation

27

Offering Table

WhoType Precedence Table

Database tables

:

Offering Class Whotype Class

: _ int id;
ypeld, int precedence;
Data Model

Loading data into all partitions can be
accomplished by:

* Run a query to fetch all of the
Whotype rows from the database

* Develop a WXS Agent to insert them
into each partition.

« Agents run in every partition, so this
task is quite simple

Dup

licate data into all partitions

This technique works best for small sets
of data

Query of Offerings where the ordering is
required by the “Whotype precedence”
will now work in any partition

FinancialEntity Map

Offering Map

Partition Key

Partition Key

PO1

111

PO1

{id=111,offerld=2}

WhoType Map

Partition Key
P01 1..... 4
P02 1....4

© 2011 IBM Corporation

WhoType loaded into ALL partitions

« Small, static table containing 3 rows are loaded into ALL partitions in the WXS

grid

* Queries that require ordering by the Whotype.precedence can be honored from ANY

partition the query is executed

« WhoType represents a type of user defined by the bank
« WXS Agents are used to accomplish this goal

SELECT o FROM TOffering o join o.whotypeid as whot join o.wheretypeid as wheret WHERE o.feld = ?
1 ORDER BY whot.precedence ASC, wheret.precedence ASC

28

Map: TWhotype

Enter a regular expression to find keys in the map. After searching for keys, use the invalida
'All keys matching query' to invalidate an entire query regardless of the number of matching

Q || F
Regular expression help
v Invalidate v ClearMap [| Show values
Key { Partition

HENEN

WS, W NS Ww N -

N NN =S, =2, 2 O O O

ation

29

Agents run in the WXS container process
Perform some operation on cache entries in the container

Returns result to the client

Using DataGrid APls clients can send agents to one, some or all partitions in a
grid.

— Client invocations may contain keys

« WXS determines the set of partitions to which the agents will be routed based on
the keys passed into the agent

« If no keys are passed in, then agents will be serialized to all partitions

(™y 8 ™ \

o v JVM JVM
Agentis serialized to .)
every grid container N
Grid (or a subset) a— —
client
P VAT JVM
C“ent \ [s "
application = JVM JVM
|
Results ’ JVM JVM

\ J “Isingle result or multiple results ['—f_. —

returned to client as desired

= The agents run only on the primary shards and each agent instance can see only
the data located in that shard

— The business logic is in the agent and data is local
* No serialization/deserialization or network hop
= Extremely suitable for concurrent grid computations where:
— The computation logic is identical in all the shards (logical parts)
— There are no dependencies on the computations among each shards

— Computations in each shard do not communicate with each other

= Can be used in some cases to process massive amounts in a partitioned grid
utilizing the horse power of shard hosting machines.

= Throughput is dependent on the slowest executing primary partition for a
computation.

30 © 2011 IBM Corporation

Parallel Map Control Flow

31

ObjectGrid Client

MapGridAgent

7\

Calls agent for each
partition (1,2)

N Z

—=

N
_—
Returns an ObjectMap
with the results from all
partitions (1,2)

W
ObjectGrid

ObjectGrid Container

ObjectGrid Container

MapGridAgent

MapGridAgent

© 2011 IBM Corporation

= Pre-load the cache with all of the data from the database

— The following data partitioning techniques have been implemented to support single
partition queries and proper ordering of the results:

o The graph of data including the Financial Institution, Offering, and Offering
Parameters are loaded into a single partition based on the hash algorithm of the
Financial institution

o The WhoType and Wheretype data is loaded into ALL partitions to allow fro the
ORDER BY queries to be executed from any partition

* In-line cache scenario using custom JDBC loader plug-in

— Custom JDBC loader plug-in will allow updates to an Offering to be synchronized to the
backend database

= WXS Cache Queries used to return collections of Offerings and Offering
Parameters to the caller

— Efficient use of the WXS query API can be accomplished since the related graph data is
co-located into the same partition as it’ s root object

32 © 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

« Start with an empty cache

DEMO - IBM WebSphere eXtreme Scale

SAMPLE

dataload
Enter Financialentity ID | Grid | JDBC |

|

Financialentity Info

OFFERINGS

ID NAME ACTIVE WHERTYPEID WHOTYPEID POV INFO

33 © 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

» Click the dataLoad button to preload the cache with contents from the database

DEMO - IBM WebSphere eXtreme Scale

SAMPLE

\ dataload | Preload completed.
Enter Financialentity ID | Grid | JDBC |

OFFERINGS

ID NAME ACTIVE WHERTYPEID WHOTYPEID POV INFO

Total time: 278 ms

34 © 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

» Get the Banks “Offerings” from Financial InstitutionlD=33 from the cache

DEMO - IBM WebSphere eXtreme Scale
SAMPLE
datal.oad
Enter Financialentity ID | Grid | JDBC |
Financialentity Info
33
OFFERINGS
ID NAME ACTIVE WHERTYPEID WHOTYPEID POV INFO
Balance - Primary Grid |
50 Checking 1 2 2 JDBC |
2 Balance - Primary 1 2 2 Grid
Savings JDBC
. Grid
56| Balance - Savings #2 1 2 2
JDBC
. Grid
57 Balance - Savings #3 1 2 2
35 JDBC - © 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

« Get the associated parameters (POVs) from “Offering ID=48" from the cache

Financialentity Info

33

OFFERINGS

ACTIVE WHERTYPEID WHOTYPEID POV INFO

Transfer Money

POVS
VALUE

562 48 Minimum Transer amount: $10

563 48 Money Transfer must be in increments of $10
579 48 $10

586 48 $20

609 48 $40

608 48 $50

611 48 $100

36 610 48 Other Amount

Demo: Sample JSP to illustrate the cache behavior

37

« Update the cached data: Offering with ID=48

* Retrieve the Offerings again from the cache again to verify it was updated

DEMO - IBM WebSphere eXtre

SAMPLE

OFFERING

ID

48 ITransfer Funds

update I

Financialentity Info

33

OFFERINGS

NAME

ACTIVE WHERTYPEID WHOTYPEID POV INFO

50 Balance - Primary 1 2 2 Grid
= Checking JDBC |
49 Balance - Primary 1 2 2 Grid
Savings JDBC |
. Grid
56 Balance - Savings #2 1 2 2
JDBC |
. Grid
57 Balance - Savings #3 1 2 2
JDBC |
. Grid
58 Balance - Savings #4 1 2 2
JDBC |
Grid
48 Transfer Money 1 2 2
JDBC
Check Available Grid
=E Credit 1 4 2 JDBC

L v pur e

Demo: Sample JSP to illustrate the cache behavior

38

» Verify the database has been updated via the in-line cache Write-Behind

loader

DEMO - IBM WebSphere eXtreme Scale

SAMPLE

dataload
Enter Financialentity ID |

Financialentity Info

id|| JpBC |

33

OFFERINGS
ID NAME ACTIVE WHERTYPEID WHOTYPEID POV INFO
48| Transfer Mone 1 2 2 Grid
y JDBC |
Balance - Pnmary | Grid |
49 . 1 2 2
Savings JDBC |
Balance - Primary Grid
50 Checking 1 2 2 JDBC |
Check Available Grid |
55 . 1 4 2
Credit JDBC |
Grid

© 2011 IBM Corporation

