
© 2011 IBM Corporation

eXtreme Scale caching alternatives for
Bank ATM Offerings

Customer POC Experience with WebSphere eXtreme Scale

© 2011 IBM Corporation 2

Agenda

§  Business and application challenges where elastic caching applies
§  Customer POC Context and Goals
§  Customer POC Scenario
§  Problem Statement
§  Solution Requirements
§  Solutions and Alternatives for consideration

§  Demonstration of one of the alternatives
§  In-line cache

§  Write-Behind loader to backend database
§  Pre-load cache from database

© 2011 IBM Corporation 3

WebSphere eXtreme Scale V8.6 Redbook

© 2011 IBM Corporation 4

Business and Application challenges

•  Http Session Cache
•  Application side cache
•  Application Inline cache

WXS elastic caching offers solutions for various
business and application challenges

© 2011 IBM Corporation 5

Business and Application challenges

•  The application state store and side cache scenarios are typically simple to
implement and are widely used

•  The in-line cache and Extreme Transaction Processing scenarios are more
advanced use cases

•  Typically involves some code running on the grid itself
•  Agents / loaders, etc

•  These scenarios apply only to WebSphere eXtreme Scale, and not to the WebSphere
DataPower XC10 Appliance

© 2011 IBM Corporation

Context and Goals

6

Context

•  Customer is modernizing
its solution of Transaction
Offerings for ATM banking
services

•  The existing proprietary
caching architecture is
difficult to maintain

•  Existing cache solution is
not sharable between
applications and runs in the
application JVM.

Goal

•  The new solution will
employ the mechanims of a
distributed cache using
IBM eXtreme Scale for
improved performance,
availability and
maintenability of the
offerings

© 2011 IBM Corporation 7

Offering Service

Banking Transaction

1.  User inserts ATM card from their financial institution into the ATM
2.  Offering Service at “Retail Bank” reads card information and contacts the “Financial

Institution”
§  Obtains the specific “Offerings” available for the card holder on the account

§  Such as: Withdrawal, funds transfer, acct balance, etc
3.  Offering Service applies the “Offering Parameters” required by the financial institution

§  Such as maximum daily withdrawal limit
4.  Offering Service renders the offerings to the ATM user
5.  From the ATM, the user initiates one of the available banking transactions from the list of

offerings presented, as obtained from the card holders financial institution

§  Data to be cached in the Banking ATM Offering Scenario
1.  Financial Institution data
2.  Offering data
3.  Offering Parameter data

Retail Bank

Retail Bank - Scenario

© 2011 IBM Corporation 8

§  Data is configuration tables from a back-end database
§  Basic Information used for the business rules
§  Offering application only “reads” the data
§  Low refresh rate (Less that 1 time per day)

§  Outside applications are used to update the database tables via web application as
changes are required, such as:
§  Offering Parameter changes
§  Offering is added or removed from a financial Institution

§  Existing Cached data size is relatively small, But………..
§  We will discuss the problem statement

Data Mapping
§  Each Financial Institution has many Offerings
§  Each Offering can have one to many Offering parameters
§  Ordering Precedence data is used to appropriately order query results

Financial Institution Offering Offering Parameters
1 1 ..m 1 1 .. m

Ordering-Precedence 1..m 1

Current Architecture

© 2011 IBM Corporation 9

§  Proprietary cache implementation
§  Local cache in every application space (Shares JVM heap with application)
§  Cache logic is difficult to maintain

§  Local cache in every application space

§  No cache sharing
§  There are 15 applications, each with its own copy of the cache data
§  Example: 40 MB of cache is now 40 MB * 15 Applications = 600 MB

§  Application Architecture requires three (3) variants of each of the 15
applications based on routing to specific financial institutions
§  Example: 40 MB cache is now 600 Mb * 3 variants of application = 1.8 GB

Problem Statement

© 2011 IBM Corporation 10

§  12 WebSphere Servers supporting the application
§  Each server contains the 1.8 GB of cache
§  Example: 40 MB cache is now 1.8 GB * 12 JVms = 12.6 GB

Problem Statement

§  Cache refresh is performed through
the reading of all records of the entity
that has changed

•  Updating all of the caches in each
JVM results in minutes of
unavailability

© 2011 IBM Corporation

Solution Requirements

11

§  The adoption of a distributed cache will be designed taking into consideration
the following requirements:

•  Coding simplification of the cache implementation

•  Compared to existing proprietary cache implementation

•  Cache sharing between applications and JVMs

•  Reliability and security for cache operations (insert, update, and delete, and queries)

•  Immediate availability of the cache to applications, even if applications or application

servers are restarted

© 2011 IBM Corporation 12

Solution and alternatives

• Option 1: Side Cache using ObjectMap API
Pros:

•  Fairly easy to implement
•  Code changes are not exhaustive and typically contained in the Data Access layer of the

application
•  Cache preloading can be straight forward and efficient
•  Application can continue to function if the cache is out of service
•  Solution could also be implemented using DataPower XC10 appliance

Cons
•  Does not support synchronization of cache changes to DB at runtime

© 2011 IBM Corporation 13

Offload Redundant Processing : Side Cache
1.  Applications check to see if WebSphere eXtreme Scale contains the desired data.

2.  If the data is there, the data is returned to the caller.

3.  If the data is not there, the data is retrieved from the back-end

4.  Insert the data into WebSphere eXtreme Scale so that the next request can use the cached copy.

© 2011 IBM Corporation 14

Solution and alternatives

• Option 2: In-Line Cache and (Optional) extreme processing for queries and
WXS agents

Pros:

•  Custom loaders can be developed to keep the database synchronized with cache updates
•  Option to preload the cache upon initialization of the backing maps
•  (Optional) Agents can be developed for parallel query and cache updates across partitions

Cons
•  Longer term investment than the Side cache scenario
•  Additional development time required build the WXS solution with WXS agents and loader

plug-ins
•  Application must use WXS APIs to interact with the cache as the “Loader” is responsible

for interaction with the database
•  Solution will only run on Extreme Scale, not Datapower XC10

© 2011 IBM Corporation 15

Offload Redundant Processing : In-line cache with Write-Behind
§  Changes are written to the back-end asynchronously

–  A write-behind cache
§  Back-end load is significantly reduced as there are fewer but larger transactions

–  WXS configuration is used to determine when to perform the batch updates to the
database, based on elapsed time / number of transactions since last buffering period

§  Back-end availability has no impact on application availability

Application logic:

1.  Look in WXS cache for object
2.  Work with the object that was returned from the

WSX grid
•  Data could have come from the cache or

the database, WXS loader takes care of
that

•  The client does not interact with the
database!

© 2011 IBM Corporation

Inline Cache

§ Whether the data is in the cache or not becomes transparent to the application
–  the application sees an extremely fast back-end access (assuming the cache is large

enough to provide a good hit rate

§ An inline cache requires the implementation of a “Loader”
– Prebuilt “JPA” loaders ship with WXS
– Or develop your own “Custom” loader using the WXS Loader interface

16

© 2011 IBM Corporation

Example Solution

§  In-line cache scenario using custom JDBC loader plug-in
– Requirement: Customer would like to allow real-time cache updates and have the cache

updates synchronized to the backend database
– Currently, updates are scheduled each evening and the cache I reloaded

§ Pre-load the cache with all of the data from the database
– Requirements:

o  The application performance cannot tolerate database access latency on cache
misses

§ Load the cache using data de-normalization and data partitioning based on
usage patterns in the applications

– Requirements:
•  Efficient access of the cached data in the IMDG (In Memory data grid)

o  Efficient use of the WXS query API can be accomplished if related graph data is
co-located into the same partition as it’s root object

o  More efficient queries can be developed if certain data from database tables are
de-normalized to avoid expensive “join” operations

o  Can implement cache queries using a single partition query to support the use
case scenarios

17

© 2011 IBM Corporation 18

§  Query all Offerings associated with the Financial Entity, ordered by precedence
SELECT o.id, o.name, o.active, o.wheretypeid, o.whotypeid, o.financialentityid,
 wo.precedence "whoPrecedence",
 we.precedence "wherePrecedence"
FROM T_OFFERING o, T_WHOTYPE wo, T_WHERETYPE we
WHERE o.wheretypeid = we.id
AND o.whotypeid = wo.id
AND o.financialentityid = ?
ORDER BY wo.precedence, we.precedence

§ Example above shows simple data denormaliztion option
§  Combine data from the Offering, Whotype and WhereType tables into a single

cacheable object
§  Eliminates the need to use ‘joins’ in the WXS GRID query to obtain the cached data

§ Precedence columns used specifically to order the query ResultSet by precedence
§ Two very small tables containing 3 or 4 rows

§  What other technique could be used to load the grid to EFFICIENTLY query the cached data
using ORDER BY o.whoType.precedence, o.whereType.precedence? Explore next!

Example: POC primary queries to support

© 2011 IBM Corporation 19

§  Define a viable data model
§  A partitioned environment requires special considerations for holding object graphs

§  Should the entire object graph instance be held in one partition?
§  Considerations include:

§  How imbalanced will the grid partitions become?
§  How can we place data into specific partitions based on a parent object?

§  Should the data be denormalized to combine fields from child database tables
into a single WXS model object?

§  Considerations include:
§  Size of the grid will grow faster. Is that an issue?
§  How does the data get properly updated back to the database?

§  Should some Objects just be loaded into all partitions?
§  Considerations include:

§  How many records of data need to be stored in each partition?
§  Could be good solution if the size is small, say storing US states, or the WhoType

and WhereType data from our example POC scenario
§  How can you duplicate data into all partitions?
§  What does this mean for partition routing to access the data?

WXS Data modeling options

© 2011 IBM Corporation 20

Collocate Master and child objects in the same partition

T_FINANCIALENTITY T_OFFERING

Offering Class

Int offerId
Int feId;

String name;

{id=111,offerId=2}

P01
Key Partition

Offering Map

Database Tables

Data Model

WXS Grid

•  Requires custom POJOs to be developed
as the Key Classes for Offering and POV

•  Implements the WXS
PartitionsableKey interface

•  Generates a HASH for the Offering
and POV identical to the Master
“FinancialEntity” object

•  Co-locate Master and child objects in
same partition

•  FinancialEntity key = id
•  Offering Key is a composite POJO that

includes the FinancialEntity key “id” and
the Offering key “offerId”

•  POV Key is a composite POJO that
includes the OfferingKey POJO and the
POV key “povId”

FinancialEntity Class

Int id;
String name;

111 P01
Key Partition

FinancialEntity Map

T_POV

POV Class

Int povId;
Int offerId;

String value;
{id=111,offerId=1}

P01
Key Partition

POV Map

{id=111,offerId=1, povid=3}

{id=111,offerId=1, povid=5}

© 2011 IBM Corporation 21

Collocate Master and child objects in the same partition

OfferingKey Code example

public class TOfferingKey implements PartitionableKey {

 int offringKey;
 int financialEntityKey;

 public TOfferingKey(int offringKey, int financialEntityKey) {

 super();
 this.offringKey = offringKey;
 this.financialEntityKey = financialEntityKey;

 }

public Object ibmGetPartition() {
 return Integer.valueOf(financialEntityKey);
}

OfferingKey POJO class

§  Implements PartitionableKey from WXS

§  WXS calls the ibmGetPartition() method
§  It returns the integer value of the Financial Entity
§  So the Offering will hash to the same value as its parent Financial Entity

Loader Code example

TOfferingKey offeringKey = new
TOfferingKey(offeringid, feid);

map.put(offeringKey, toffering);

§  In the Loader code, create a new instance of
the TOfferingKey
§  Pass in the id of the Financial Entity

and the id of the Offering on the
constructor

§  Put the entry in the WXS map using the
hashed Key

© 2011 IBM Corporation

Graph of objects loaded into the same partition for efficient single partition query

22

SELECT o FROM TOffering o WHERE o.feId = ?1

The query can be executed in a single partition to obtain ALL related offerings for a
given financial institution

© 2011 IBM Corporation

Graph of objects loaded into the same partition for efficient single partition query

23

SELECT p FROM TParameterOfferingValue p WHERE p.offeringid = ?1

The POV query can be executed in a single partition to obtain ALL related POVs for
a given Offering

© 2011 IBM Corporation

Denormalize the data model

24

§  Original Offering class
§  Fields map to the columns in the database table

§  For queries of child objects to work, they must be
in the same partition

§  For queries that use ORDER BY to work, the
objects used for the ordering must be in the same
partition

§  An implicit JOIN is incurred to obtain the
whotype.precedence and wheretype.precedence

§  Example SQL: Similar WXS Query is required to
obtain from the cache:

SELECT ………….
FROM T_OFFERING o, T_WHOTYPE wo,

T_WHERETYPE we
WHERE o.wheretypeid = we.id
AND o.whotypeid = wo.id
AND o.financialentityid = ?
ORDER BY wo.precedence, we.precedence

© 2011 IBM Corporation 25

§  New Offering class that has been
denormalized

§  The Offering class contains fields for the
precedence of the whotype and wheretype

Considerations:
§  The WhoType and WhereType objects no longer

need to be in any specific partition
§  When pre-loading the grid, or in a side cache

scenario, an appropriate SQL query to pull the
data from the DB to be placed into the Offering
class when added to the cache.

§  Let’s see how this SQL looks (From preloader)
SELECT O.*,P.ID AS POVID, wheret.precedence as WHEREP,

whot.precedence as WHOP FROM KEVINLP.T_OFFERING O,
KEVINLP.T_PARAMETEROFFERINGVALUE P, T_WHERETYPE
wheret, T_WHOTYPE whot WHERE O.ID = P.OFFERINGID and
O.wheretypeid=wheret.id and O.whotypeid=whot.id

Denormalize the data model

© 2011 IBM Corporation 26

Retrieving the data from the Offering object
§  The new fields can be retrieved from the Offering

class as shown below using the getter() methods
on the Offering class.

§  Or used in an ORDER BY Clause in a WXS
query

§  ** If the query required to run on multiple
partitions, the client must order (Sort) the results
form the partitions.

§  Another alternative is to load the Whotype and
Wheretype objects into ALL partitions in the grid
§  Then the queries that use these objects will

work from any partition

Denormalize the data model

© 2011 IBM Corporation 27

Example: Duplicate data into all partitions (MapGridAgent)

WhoType_Precedence Table

Database tables

Data Model

•  Loading data into all partitions can be
accomplished by:

•  Run a query to fetch all of the
Whotype rows from the database

•  Develop a WXS Agent to insert them
into each partition.

•  Agents run in every partition, so this
task is quite simple

•  Duplicate data into all partitions
•  This technique works best for small sets

of data
•  Query of Offerings where the ordering is

required by the “Whotype precedence”
will now work in any partition

Whotype Class

int id;
String name;

int precedence;

1 …. 4 P02
1 …..4 P01

Key Partition

WhoType Map

Offering Class

it offferIdID;
int whotypeid;

Offering Table

{id=111,offerId=2}

P01
Key Partition

Offering Map

111 P01
Key Partition

FinancialEntity Map

© 2011 IBM Corporation

WhoType loaded into ALL partitions

28

•  Small, static table containing 3 rows are loaded into ALL partitions in the WXS
grid

•  Queries that require ordering by the Whotype.precedence can be honored from ANY
partition the query is executed

•  WhoType represents a type of user defined by the bank
•  WXS Agents are used to accomplish this goal

SELECT o FROM TOffering o join o.whotypeid as whot join o.wheretypeid as wheret WHERE o.feId = ?
1 ORDER BY whot.precedence ASC, wheret.precedence ASC

© 2011 IBM Corporation

Data Grid Agents

29

§  Agents run in the WXS container process

§  Perform some operation on cache entries in the container

§  Returns result to the client

§  Using DataGrid APIs clients can send agents to one, some or all partitions in a
grid.

‒  Client invocations may contain keys

•  WXS determines the set of partitions to which the agents will be routed based on
the keys passed into the agent

•  If no keys are passed in, then agents will be serialized to all partitions

© 2011 IBM Corporation

Agents
§ The agents run only on the primary shards and each agent instance can see only

the data located in that shard

– The business logic is in the agent and data is local

•  No serialization/deserialization or network hop

§ Extremely suitable for concurrent grid computations where:

– The computation logic is identical in all the shards (logical parts)

– There are no dependencies on the computations among each shards

– Computations in each shard do not communicate with each other

§ Can be used in some cases to process massive amounts in a partitioned grid
utilizing the horse power of shard hosting machines.

§ Throughput is dependent on the slowest executing primary partition for a
computation.

30

© 2011 IBM Corporation

Parallel Map Control Flow

31

© 2011 IBM Corporation

Demonstration

32

§ Pre-load the cache with all of the data from the database

– The following data partitioning techniques have been implemented to support single
partition queries and proper ordering of the results:

o  The graph of data including the Financial Institution, Offering, and Offering
Parameters are loaded into a single partition based on the hash algorithm of the
Financial institution

o  The WhoType and Wheretype data is loaded into ALL partitions to allow fro the
ORDER BY queries to be executed from any partition

§  In-line cache scenario using custom JDBC loader plug-in

– Custom JDBC loader plug-in will allow updates to an Offering to be synchronized to the
backend database

§ WXS Cache Queries used to return collections of Offerings and Offering
Parameters to the caller

– Efficient use of the WXS query API can be accomplished since the related graph data is
co-located into the same partition as it’s root object

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

33

•  Start with an empty cache

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

34

•  Click the dataLoad button to preload the cache with contents from the database

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

35

•  Get the Banks “Offerings” from Financial InstitutionID=33 from the cache

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

36

•  Get the associated parameters (POVs) from “Offering ID=48” from the cache

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

37

•  Update the cached data: Offering with ID=48
•  Retrieve the Offerings again from the cache again to verify it was updated

© 2011 IBM Corporation

Demo: Sample JSP to illustrate the cache behavior

38

•  Verify the database has been updated via the in-line cache Write-Behind
loader

