
© 2009 IBM Corporation

Graphical Data Mapping in IBM Integration
Bus v9

Maria Luisa Lopez de Silanes – IIB ID developer

25 March 2014

Marisa Lopez de Silanes
IBM Integration Bus Development
IBM Hursley Park, UK
lopezdsr@uk.ibm.com

© 2014 IBM Corporation2

Agenda

 Graphical Data Mapping overview

 Designing a message map

 Graphical Data Mapping editor

 Editing message maps

 Transforming a SOAP message

 Executing a message map

 Troubleshooting message maps

© 2014 IBM Corporation3

Graphical Data Mapping

 Graphical data maps offer the ability to achieve the transformation of a
message without the need to write code, providing a visual image of the
transformation, and simplifying its implementation and ongoing
maintenance.

 A message map is the IBM Integration Bus implementation of a graphical
data map. It is based on XML schema and XPath 2.0 standards.

 You can use a message map to perform any of the following actions:
– Transform a message
– Enrich a message with data available in an external database
– Modify data located in an external database

• Note: You can call DB2 stored procedures from a graphical data map in
IBM Integration Bus version 9

– Route a message based on content.

© 2014 IBM Corporation4

Designing a message map

 The data structure that you define in a message map for an input or an output message is
the IBM Integration Bus internal representation of the message.

 Each data transformation is driven by the type of the output element and the mapping
operation required to calculate its value.

 A conditional expression can be defined per transform to define the condition under which a
transform should be applied.

 Maps can be broken down into a hierarchy of ‘nested’ maps using one of the structural
transforms to avoid clutter in large maps.

 Submaps allow you to reuse common transformations multiple times.

 If the only transform that you define between an input map component and an output map
component is the Move transform so that the component is copied over without any
modification, you are recommended to remove the component from the message map. The
map transformation will be more efficient since the mapping engine will only focus on the
structures that do require change.

 A null value mapped from an input element to an output element produces an output
element with an empty value.

 Simple or complex type output elements can be created as nil elements.

© 2014 IBM Corporation5

Choosing a graphical data map

 (*) Note: You can use a legacy message map, but you cannot modify it in
IBM Integration Bus. These type of maps are maintained for compatibility with
earlier versions of IBM Integration Bus.

Recommended use Type of resource
Message map Graphical data mapping .map file

Submap Reuse of common data transformations .map file

Local map Reduce complexity reading and managing
a Message map

No file. It is embedded
within a Message map

Legacy message
map (*)

Solutions migrated from earlier versions of
IBM Integration Bus

.map file

© 2014 IBM Corporation6

Input and output messages to a message map

The following message domains are supported in a message map:
– DFDL
– XMLNSC
– DataObject
– SOAP
– BLOB
– MRM (The MRM domain is supported for compatibility with legacy message maps.)

Custom
message
formats Pre-defined

message formats
Message

sets

© 2014 IBM Corporation7

Additional inputs and outputs: Message assembly components

The data structure that you define in a message map for an input or an output message is
the IBM Integration Bus internal representation of the message.

In IBM® Integration Bus, the message assembly is the internal representation of a
message. You can configure a message map to include the following message assembly
components:

© 2014 IBM Corporation8

Additional inputs and outputs: Database tables

Database tables can be set as additional inputs and outputs of a message map.

Outputs:

 Insert transform

 Update transform

 Delete transform

Inputs:

 Select transform

© 2014 IBM Corporation9

Adding a message assembly component

 Copy a message assembly component unchanged: Do not include the component in the
message map.

 Read elements of a message assembly component: Add the component to the input message
assembly only. The Mapping node passes it through unchanged

 Modify all the elements of a message assembly component: Add the component such as the
local environment tree to the input message assembly and to the output message assembly.
Then, define transforms between each of its elements.

 Modify some elements of a message assembly component: Add the component such as the
local environment tree to the input message assembly and to the output message assembly.
Define a Move transform for the entire component, that is, at folder level, and then specific
transforms for each of the elements that you want to transform within an Override function.

 Initialize a message assembly component (create a new message assembly component in the
output message): Add the message assembly component only to the output message assembly.

 Add a message assembly component: Add the message assembly component to the output
message assembly and populate at least one field. The Mapping node creates a new output
structure containing the results of your transformations.

 Delete a message assembly component from the input message: Add the message assembly
component to the output message assembly and do not set any field.

© 2014 IBM Corporation10

Graphical Data Mapping editor

© 2014 IBM Corporation11

Automap
 Automates the task of producing

transformations (Move transforms)
between source and target elements of
the same or similar names

 Useful for working with large schemas

 You can use Auto map as a quick fix
when you create a Local map or another
nested mapping, and a warning or error
marker is displayed to prompt you to
complete the nested mapping.

© 2014 IBM Corporation12

Quick Link
 You can then use the quick outline view and its built-in filter to find and select the required

element.

 When you have selected the required element, a transform is created in the Graphical Data
Mapping editor.

© 2014 IBM Corporation13

Mapping xs:any on an input or output message

 Option 1: You can use the Cast function
to redefine parts of the input or output
model in a graphical data map by
specifying the specific simple or complex
global type defined in a particular
schema file.

 Option 2: You can define a transform,
such as the Submap transform, and
define the input and output xs:any
elements within the nested map of the
transform.

– Move transform
– If transform
– Submap transform
– Custom XPATH transform
– Custom Java transform

© 2014 IBM Corporation14

Primary and Supplementary inputs and connections

 Primary inputs are directly involved in the transformation:
– They contain the data used to produce the output.
– They can also be used to define properties of the transform (E.g. Condition property).

 Supplementary inputs are used to pass elements into a transform without affecting the
primary purpose of that mapping:

– They are NOT used directly in the transformation.
– They can be use to define transform properties.
– You can have as many supplementary inputs as required.
– They can be used to pass extra data into a nested map. E.g. Supplementary inputs (both

repeating and non-repeating) can be passed into the ‘For each’.

© 2014 IBM Corporation15

Transforms and functions

• Core mapping transforms:
– You can use built-in structural and functional mapping operations, which enable you to

graphically construct the required message transformations to build the output message.

• Custom transforms:
– You can use custom transformations to build your own XPath 2.0, Java™, or ESQL

functions, which can be invoked to perform specialized transformations within the
message map.

• XPath functions (fn:<functionName>):
– You can use XPath 1.0 and XPath 2.0 functions to transform data in a message map.

• Database transforms:
– You can use the Select transform to query one or more database tables, and retrieve

data that you can use in the message map to set output element values, define
conditions, or use as input to build other transforms conditions.

– New in IIB v9: You can use a database routine transform to call a stored procedure from
a database, and retrieve data that you can use in the message map to set output
element values, define conditions, or use as input to build other transforms conditions.

• Note: Only IBM® DB2® stored procedures are supported in IBM Integration Bus

© 2014 IBM Corporation16

Structural transforms
 Maps can be broken down into a hierarchy of ‘nested’ maps using one of the structural transforms:

– Local
• Map a complex source to a complex target in a separate ‘page’
• Reduces clutter in the mapping editor

– For each
• Iterate over a repeating source element (array) and produces the same number of target elements
• How the structure gets mapped is determined by the nested map

– Append
• For appending one array to the end of another
• Has two (or more inputs), one output.
• The order in which the inputs are processed (appended) is specified in the ‘Order’ tab in the properties page

– Join
• For merging the data from two or more arrays
• Arrays are correlated by specifying a join condition (XPath 2.0 predicate)

– Submap
• Similar to local, but the mapping is defined in a separate map file and is reusable

– If / Else transform
• Allows ‘else’ condition to be mapped as well
• ‘Grouped transform’ containing as many else-if conditions as necessary
• Each clause contains a nested map

Each condition is individually mapped

XPath predicates are
set in the properties view

Navigate into nested map
To configure transformations

© 2014 IBM Corporation17

Functional Transforms

 The target value can be computed by applying a
function to one or more inputs

 Large function library from XPath 2.0

 String manipulation
– E.g. concatenation, sub-string, matching,

find/replace, regex

 Numeric calculation
– E.g. counting, summing, rounding, min/max

etc

 Date/time processing
– E.g. creating timestamps, extracting

components of date/time, duration
processing

© 2014 IBM Corporation18

Custom Transforms

 Custom XPath transform
– Use this transform to write custom transformation logic by using XPath 2.0 expressions

 Custom Java transform
– Use this transform to call Java methods from within a message map

 Custom ESQL transform
– Use this transform to call ESQL code from within a message map

1.6*sum($Item/(Price * Quantity))

© 2014 IBM Corporation19

Mapping operations to modify data in a database

• Insert transform:
– You use the Insert transform to add one new row of data, or multiple rows of data, into a

database table.

• Update transform:
– You use the Update transform to modify a row of data, or multiple rows of data, in a

database table.

• Delete transform:
– You use the Delete transform to delete a row of data, or multiple rows of data, in a

database table.

• Database routine transform (New in IIB v9):
– You use a database routine transform to call a stored procedure from a database to

insert, delete, or update data in one database table.

© 2014 IBM Corporation20

Multiple Outputs – Splitting

 Multiple target trees can be added
to the map

 Each target propagates one
message per input message

© 2014 IBM Corporation21

Multiple Outputs – Shredding

 A repeating input element can be mapped to the target message assembly (top level
element)

 ‘For each’ transform will propagate one output message per input element

 Other parts of the input tree can be referenced by adding supplementary inputs to the ‘For
each’

© 2014 IBM Corporation22

Store procedures New in IIB v9
 Use the Database Routine transform to call a stored procedure from a database.

– Only IBM DB2® stored procedures are supported.
– Use the nested mapping of the Database Routine to provide values for the routine input parameters

 Use the Return transform to map any output parameters, return values, or ResultSets produced by
calling the Database Routine.

– You can also connect inputs from the message to the Return transform so that they can be mapped
to the output message on succesful call of the routine

 Optionally, if you want the map the handle any possible DB exception, use the Failure transform.

© 2014 IBM Corporation23

Accessing user-defined properties from a Mapping node

New in IIB v9 FP1: A Mapping node can access properties that you have associated with the
message flow that contains the node.

– To access these properties from a Mapping node, call the function
mb:getUserDefinedProperty("propertyname") from a custom XPath mapping. The function
returns a string that contains the property value, regardless of the original type of the property.

© 2014 IBM Corporation24

Transforming a SOAP message Integration service

© 2014 IBM Corporation25

Transforming a SOAP message

© 2014 IBM Corporation26

Mapping a SOAP message

3) Map the cast elements

Mapping a SOAP message

2) Right click -> Cast…
select required element

1) Create the map using the
built in SOAP schema.

© 2014 IBM Corporation27

Executing a message map

 Working with databases:
– At design time, you must have a database definition file (.dbm file) in an available Data

Design project for each database that you want to access. A data definition file contains
one connection per database system.

– At runtime:
• You must have a JDBC connection of Type 4 defined for each database that your

message map uses.
• You must configure a JDBCProvider configurable service per database.
• The JDBCProvider service name for a runtime database must be the same name as

the development database name that you use in your message map.

 New in IIB v9 FP1: When the function level is changed to 9.0.0.1 or later using the
mqsichangebroker command, the message maps are prepared for execution on
deployment instead of when the first message is flowed through the node.

– There is no drop in performance from initialization when the first message is flowed
through the node.

– The map and its dependencies, such as any referenced message models, are validated
during deployment to ensure that the map runs successfully on first message.

– All map dependencies, such as a valid message model, must be resolved at deployment
for the deployment process to complete.

– When IBM Integration Bus is restarted, dependencies are validated before the message
flow can be restored.

© 2014 IBM Corporation28

Troubleshooting a graphical data

 A user trace will track the progress of the message though the map

 Logs messages when
– individual transforms are entered and exited
– The input tree is navigated
– Output tree elements are created
– Values are assigned to the output
– Variables are assigned/updated or go out of scope
– Functions are invoked, including user defined functions

…

2012-03-12 12:07:53.044555 96400 UserTrace BIP3962I: The Mapping node is assigning the value ''Twister'' to
the current output element.

2012-03-12 12:07:53.044647 96400 UserTrace BIP3956I: The Mapping node is exiting the transform ''Move''.

2012-03-12 12:07:53.044689 96400 UserTrace BIP3955I: The Mapping node is entering the transform ''Move''.

2012-03-12 12:07:53.044815 96400 UserTrace BIP3959I: The Mapping node is traversing the input tree by using
the nodetest ''element(Price)'' and the relationship ''child''. The number of matching elements is ''1''.

2012-03-12 12:07:53.044876 96400 UserTrace BIP3960I: The Mapping node is adding a new element with name
''out:Cost'' into the output tree.

…

© 2014 IBM Corporation29

Additional information

 IBM Integration Bus version 9 infocenter
http://pic.dhe.ibm.com/infocenter/wmbhelp/v9r0m0/index.jsp?topic=
%2Fcom.ibm.etools.msgbroker.helphome.doc%2Fhelp_home_msgbroker.htm

 IBM Integration Community blog
https://www.ibm.com/developerworks/community/blogs/c7e1448b-9651-456c-9924-
f78bec90d2c2/?lang=en

 IBM Integration Community wiki
https://www.ibm.com/developerworks/community/wikis/home?
lang=en#!/wiki/W37b629a0f7aa_4709_9506_bba2a096693d

 Open technologies for integration
https://github.com/ot4i

 DFDL schemas on github
https://github.com/DFDLSchemas

 IBM Integration media -YouTube
https://www.youtube.com/user/IBMintegrationMedia

 DeveloperWorks technical library
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wmb.html

© 2014 IBM Corporation30

Copyright Information

• © Copyright IBM Corporation 2012. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan, CICS, Cloudburst,
Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus, Lotus Notes, Maximo, Quickr, Rational, Rational
Team Concert, Sametime, Tivoli, WebSphere, and z/OS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml.

• Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

• SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

• Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

• Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other company, product and
service names may be trademarks or service marks of others. References in this publication to IBM products and services
do not imply that IBM intends to make them available in all countries in which IBM operates.

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

