
Efficient, scalable caching using ESQL shared
variables in WMB and IIB

Emir Garza (emir.garza@prolifics.com)
Tim Dunn (tim_dunn@uk.ibm.com)
Gerardo Brenner (gerardo.brenner@prolifics.com)

Conventional Caching using ESQL

Ø  The most common cache implementation with ESQL shared
variables consists of a shared ROW that contains the result of a
SELECT on the database table being cached:
DECLARE CACHE SHARED ROW;

Ø  For example, a database table called “AIRPORTS” contains two
columns, “CODE” and “CITY”. This code loads the cache:
SET CACHE.AIRPORT[] = SELECT A.CODE, A.CITY FROM

 Database.AIRPORTS AS A;

Ø  The CACHE variable will be populated like this:
CACHE.AIRPORT[1].CODE = AAA

CACHE.AIRPORT[1].CITY = Anaa

CACHE.AIRPORT[2].CODE = AAB

CACHE.AIRPORT[2].CITY = Arrabury

2

Conventional Caching using ESQL (Cont.)

Ø  This function implements the cache:
CREATE PROCEDURE getCity_v01 (IN airportCode CHARACTER)
RETURNS CHARACTER
BEGIN

-- PERFORMANCE TEST ONLY! No ATOMIC blocks.

-- Do not use if Additional Instances > 0.

IF CACHE.AIRPORT.CODE IS NULL THEN

-- load the cache

 SET CACHE.AIRPORT[] = SELECT A.CODE, A.CITY FROM

 Database.AIRPORTS AS A;

END IF;

RETURN THE(SELECT ITEM A.CITY FROM CACHE.AIRPORT[] AS A

 WHERE A.CODE = airportCode);

END;

3

Conventional Caching using ESQL – The Problem

Ø  The problem with this cache structure is that it doesn’t scale. A
user trace will show that SELECT scans the table sequentially
until it finds a row that satisfies the WHERE clause. As the table
grows, the search gets slower. There comes a point when it’s
faster to drop the cache and go to the database each time.

Ø  Measurements conducted by the authors (IBM Integration Server
V9 on Windows 7 64 bit, with a local DB2 10.1 database) show the
effect of a growing cache:

4

Conventional Caching using ESQL – The Problem

5

ESQL cache – New Method

Ø  The new cache stores each key and value (in our example, airport
code and city name) as a NAMEVALUE pair:

CACHE.AAA = Anaa

CACHE.AAB = Arrabury

...

CACHE.ZZV = Zanesville

Ø  Note there is no array. To return the city name for a given an
airport code, the cache search function simply refers to the
appropriate variable:
RETURN CACHE.{airportCode};

6

ESQL cache – New Method (Cont.)

CREATE PROCEDURE getCity_v02 (IN airportCode
CHARACTER) RETURNS CHARACTER BEGIN

IF NOT EXISTS(FIELDNAME(CACHE.*[]) THEN

 DECLARE TEMPCACHE ROW;

 SET TEMPCACHE.AIRPORT[] = SELECT A.CODE, A.CITY
 FROM Database.AIRPORTS AS A;

 FOR cacheline AS TEMPCACHE.AIRPORT[] DO

 CREATE LASTCHILD OF CACHE NAME cacheline.CODE

 VALUE cacheline.CITY;

 END FOR;

END IF;

RETURN CACHE.{airportCode};

END;

7

ESQL cache – New Method (Cont.)

Ø  Because the search accesses the variable directly, it is much
faster and scales better. The chart below compares the response
time of the ESQL cache with the standard cache. The plot shows
milliseconds per message, for cache sizes up to 9,000 rows:

8

ESQL cache – New Method (Cont.)

9

Comparison with Global Cache

 Message Broker Version 8 introduced Global Cache.
 It uses the Execution Group’s JVM (more specifically, the JVM’s

heap) to store data, and provides Java APIs to put to and get
from the cache. It is easy to implement and provides consistent
performance across a range of cache sizes. One advantage of the
Global Cache over ESQL shared variables is that the cache can be
shared between message flows, integration servers / execution
groups, and integration buses / brokers (recall that the scope of
ESQL shared variables is the message flow).

 The next table shows how Global Cache compares with ESQL

Cache:

10

Comparison with Global Cache (Cont.)

11

Conclusion

Ø  The proposed cache structure results in a significant performance
improvement for caching with ESQL shared variables.

Ø  The logic to implement the new cache is very simple, so
converting existing standard cache structures should be
straightforward.

Ø  The authors have not measured cache sizes beyond 9,000 rows,
but the trend indicates that a cache of 80,000 entries could still
be faster than accessing the database (the precise cutoff point
will be different for different hardware and software
configurations). This is a significant improvement over the
current cutoff point of a few thousand entries.

12

Conclusion (Cont.)

Ø  For larger cache sizes, consider using the Global Cache, as it
provides consistently good performance and is easy to
implement. If it is necessary to share the cache between message
flows, integration servers / execution groups or integration
buses / message brokers, then the Global Cache is the only
option, as the scope of ESQL shared variables is the message
flow.

13

References

Ø  The new caching mechanism has been implemented during
development work at a big South Africa bank (IBM), as well as an
UK motoring organization (Prolifics).

Ø  The full article about Efficient, scalable caching using ESQL is
about to be published in DevelopmentWorks

14

