@
Iyl
i
[ty

IIII
[l
]|

Java VM monitoring and the
Health Center API

William Smith will. smith@uk.ibm.com

What problem am | solving?
— What is my JVM doing? Is everything OK?
— Why is my application running slowly? Why is it not scaling?
— Am | using the right options?
Live monitoring tool with very low overhead (< 1%)
Understand how your application is behaving

— Monitor Class loading, File 1/0, Environment settings, Garbage
Collection, Method Profiling, Locking, Native memory use, Threads

Diagnose potential problems, with recommendations
Works at the JVM level
Suitable for all Java applications

Powerful API allowing embedding of Health Center into other
applications

@ Class loading timeline 52 =8
006 012 013 0:24 030
elapsed time (minutes)
@ Classesloaded &2 | EG Class histogram =g
Filter classes: Appl
Time loaded Shared cache Classname =
0:01 minutes No g
0:01 minutes No ConcurrentModificationException
0:01 minutes No NoSuchElementException
001 minutes No com/ibm/javal g y ¥
001 minutes No com/ibm/javal g y ¥
001 minutes No com/ibm/javal g LA
001 minutes No com/ibm/javal g ft ThreadDa
0:01 minutes No javaflang/NoSuchMethodError
0:01 minutes Mo javaflang/IncompatibleClassChangeError
0:01 minutes Mo javaflang/management/ManagementFactory
001 minutes No com/ibm/lang/management/ManagementUtils
001 minutes No jevalang/management/ClassLoadingMBean -
« m D
5 Configuration &2 (| System Properties | Environment Variables: =0
Property Value -
Java parameters
_Deom.ibm.fiym.bootstrap.lib
~Dconsole.encoding=CpdS0
-Djava.class.path=;c\javabuilds\javabsi8\sdilib;
~Djava.ext.dirs=c:\javabuilds\javaberB\sdidjeeib\ext
-Djavahome=ci\javabuilds\javabsi8isdi\jre
~Djava.
) pett
-Dsun,java.command=TestApplication L
-Dsun,java.auncher=SUN_STANDARD F
-Duser.dir=C:\java\testApplication
-Xdump
-Xhealthcenter
~Xjckjlscar 24
_2se 0=71168
_orgapache harmony vmi.portlib
_port_ibrary o
9, Java Runtime Environment &% =0 ystem &3 =0
Property Value Property. Value
Agent version 11.0.20100219 Architecture 186
Full version JRE16.0 1BM Windows 32 build p|||| Host name CORBIN-PC
Java home c\javabuilds\javabsiB\sdijre Mumber of available processors 2
Java vendor IBM Corporation Operating system Windows 7
Java virtual machine name 18M)3 VM Operating system version 6.1 build 7600
Process id 12160
Version 16

Class loading visualisation
*Shows all loaded classes
*Shows load time

*ldentifies shared classes

*Live class histogram information

Garbage Collection visualisation
*Visualises heap usage and gc pause times

over time

*ldentifies memory leaks
*Suggests command-line and tuning

parameters

*Same recommendation logic as GCMV

Environment reporting
*Detects invalid Java options

&5 Heap and pausetimes 2 | (22l Object allocations|] Samples by request site|] Samples by object

1200
1000
800

600

elapsed time (ms)

400

R

200

100

0:00 012 0:24

[Summary 52 |ei Call hierarchy (), Timeline

0:36 048
elapsed time (minutes)

1:00

112

(awpazs

Concurrent collection count

6C Mode

Global collections - Mean garbage collection pause
Global collections - Mean interval between collections
Global collections - Number of collections

Largest memory request

Minor collections - Mezn garbage collection pause
Minor collections - Mezn interval between collections
Minor collections - Number of collections

Minor collections - Total amount flipped

Number of collections triggered by allocation failure
Proportion of time spent in Garbage Collection pauses
Proportion of time spent unpaused

System (forced) garbage collection count

3
Default (gencon)
585 ms
1486 ms
55

1530 kB
244 ms
384 ms
25
40160 KB
m
451%
955%
49

*Detects options which may hurt performance or

serviceability

*Useful for remote diagnosis of configuration-related

problems

T Files Open [File /O i3

File open event and File close event

/0

occur

13:50:40
/home/hhellyer/IBM/WebSphere/AppServer/profiles/AppSrl/in
stalledApps/unoNodel1Cell/PlantsByWebSphere.ear/PlantsByWe
bSphere.war/images/flower_pansies.jpg

T T I'T

T O e EveTT

13:50:39

[Open File details &2

File name filter:

12:50:40 13:50:41 12:50:42

Clock time (time)

12:50:43

Open time File name
13:50:40
13:50:40
13:50:40

13:50:40

/home/hhellyer/IBM/WebSphere/AppServer/profiles/AppSn1 installedApps/unoNodedl Cell/PlantsByWebSpt
/home/hhellyer/IBM/WebSphere/AppServer/profiles/AppSn1 installedApps/unoNodedl Cell/PlantsByWebSpt
/home/hhellyer/BM/WebSphere/AppServer/profiles/AppSn1 installedApps/unoNodedl Cell/PlantsByWebSpt
/home/hhellyer/TBM/ WebSphere/AppServer/profiles/AppSndl /installedApps/unoNode01 Cell/Plants8yWebSpt _

I - r

Native Memory

*Detect native memory leaks in application
*Determine if external forces are using more
memory

*Memory counters showing which parts of the
JVM are using the most native memory

*Lists currently open files

*Monitor application file open/close events as they

Port Library

Native memory usage 52 =0 VM native memery 2
—Pr rtual | IVMTI
16.0
700 140
60— 120
500 100
8 g
=
= 400 T 80
o o
.o =
300 60
200 40
100 < 20
0 0.0
0:12 0:24 0:36 048 100 112 1.24 0:12 0:24 0:36 048 100 112 124
elapsed time (minutes) elapsed time (minutes)
Native memory table JWM native memory breakdown table &2
Category Allocated Deep Allocated Sha... Bytes Desp Bytes Shallow
JRE 6948 0.0 569 MB 0.0 MB
Class Libraries 265 0.0 0.9 MB 0.0 MB
jing 279 27 500 MB 2.59 MB
JIT Data Cache 20 20 1.0 MB 10 MB
JIT Code Cache 3.0 30 1.5 MB 1.5MB
\ 6404 345 563 MB 0.88 MB
NI 336 336 018 MB 018 MB
Trace 872 872 0.38 MB 0.38 MB
VMTI 3686 290 145 MB 0.033 MB
Classes 351 351 156 MB 15.6 MB
Memory Manager (295 294 523 MB 106 MB
Threads 210 142 883 MB 0.27 MB
109 109 0013 MB 0.013 MB

m

Health Center overview continued

@ Method profile % | =0
Filter methods: | Apply ||| Clear
Svamp\as Self (%) Self Tree (%) Tree Method é M eth Od P rOfi I i n g
o W e e s wmmi | *Always-on profiling offers insight into application
219 | 417 java2d.IntroSSurfaceSDdE.render(int, int, java.awt.Grapt

I

' tivit
179 245 | com.ibm.otivm. VM findClassOrNull{java.lang.String, je aC IVI y

1

e 1 ey ot *|dentifies the hottest methods in an application
o 1 e | *Full call stacks to identify where methods are being
> o st 1 called from and what methods they call

12 et 1 «No byte code instrumentation, no recompiling

COLEERMNRENEREEEE

099 543 1 com.ibm.otivm.BootstrapClassLoader.loadClass(java.l:
093 1.26 sun.java2d.pipe.Drawlmage.blitSufaceData(sun java2d
14 093 093 sun.awt.SunToolkit.isInstanceOf(java.lang.Class, java.la
13 086 954 1 sun,javald.pipeAlphaPaintPipe.renderPathTile(java.lan
1 072 0.73 java.util Hashtable.getEntry(java.lang.Object) .
10 066 0.66 com.ibm,java diagnostics.healthcenter.agent.dataprovi lis Monitors bar chart & .|
O 1n F:nﬁﬁ | 127 i iadd mine CnanthaneBandarer cnantlinl m...n,;u ke inflated Java Monitors
% Invocation paths &1 1 % Called meﬂ\ods| % Tlm:ﬁne|] Method trace summary = Slow (height) and % miss (color)

Methods that call XEvent.getFieldsAsString() |
D) XEvent.getFieldsAsString
(D XWrapperBasetoString (100%)
) XEvent.toString (100%)
(@D String.valueOf (100%)

300

5
s
BAD IObjec

FG21

=
1=
=1

Slows lock count (nurmber)
[52B04FF8] DataStore@00F62BES (Object)

&
&
i
g

Java Lock analysis
*Always-on lock monitoring

Menitor

*Quickly allows the usage of all locks to be profiled — —

*Helps to identify points of contention in the It s Mitr |

application that are preventing scaling T e

82 29 0
4 64 22 0 1 20551863 [00DC5CEE] DataStore@O0FE2E
0 2 0 0 0 17784 [00DCE34C] sun/misc/GCSLate T
0 4 0 0 0 Ti675 [52B04818] java/lang/ref/Refer
0 7 0 0 0 9814 [52B04BB4] java/util/ TimerSTir
0 1 0 0 0 1947 [52B04FA4] DataAnalysis@O0FE
n e} n n n

RELLEE] 570052401 TANNEACIR (Nhis |
3

= Current threads 22 = 0| [Number of threads 2 =0
Thread name filter: App Clear MNumber of threads
Threads vi
Thread name Thread state ° 200 rea s Vlew
- sList of t threads and stat
ist of current threads and states
JIT Compilation Thread RUNNABLE 150 . .
Signal Dispatch RUNNABLE = D dI k d d |
sl Dispichr = eadlock detection and analysis
Ge Slave Thread RUNMABLE 5
= .
Finalizer thread RUNNABLE £ 100 .N mb r f thr d V r tlm
RMITCP Accept-1972 RUNNABLE E u e O ea S O e e
Hesith Center trace subscriber RUNNABLE .S ntended monitor
LT=0:P=800369:0=0:port=55465 RUNNABLE 50 ee conte € 0 ors
RMITCP Cennection(1)-9.20187.149 RUNNABLE
Attach APl wait loop RUNNABLE 0.0
RMITCP Connection(3)-9.20187.149 RUNNABLE 011 011 011 011
RT=0:P=800363:0=0:TCPTransport.. RUNMABLE elapsed time (minutes)
WT=1 RUNNABLE
WT=2 RUNNABLE 1 Thread details &2 =
WT=3 RUNNABLE
RMI Scheduler(D) TIMED_WAITING Owned menitor name
Thread-3 WAITING java.net.SocksSocketlmpl@119c119¢
stop JMX Server on shutdown WAITING
JME server connection timeout 23 WAITING
WT=4 WAITING
#a Dump Wizard 8 =
“ m ’
Contended menitor Dump Options
Ty m - Select the required dumps

["] Heap Dump - Picture of in-mermory objects on the Java heap, used for memory analysis.

[] System Dump - Also known as core dump. Involves dumping the entire address space and as such can be very large.

Live control of application ["]Java Dump - Also known as thread dump or Java core. Used for viewing the thread activity inside the JVM at a given time.
*Trigger dumps
*Enable verbosegc collection

Finish Cancel

The tool is provided in two parts:

— An agent that collects data from a running application.
— An Eclipse-based client that connects to the agent.
The Agent ships with the following Java SDK versions:

— Java 5sr9 and upwards
— Java 6sr3 and upwards

The latest version of the agent is always available from within the Health
Center Client

— Recommended to always update to the latest version of the agent

Agent package unzips over the JRE directory of the Java installation you
are using to run the application

= Full instructions are provided within the help shipped with the Health
Center Client but in most cases as simple as :

For Java 5 SR10 and later, or Java 6 SR5 and later (including Java 7)
java —Xhealthcenter HelloWorld

(can be used in production)

For 5 SR9 and earlier, or Java 6 SR4 and earlier
java —agentlib:healthcenter —Xtrace:output=healthcenter.out HelloWorld

(not recommended for use in a production environment)

= Download and install IBM Support Assistant Workbench 4.1
— http://www.ibm.com/software/support/isa/workbench.html
— An Eclipse based tool
— You select the IBM support plugins you want
— In the workbench, select Update > Find New... > Tools Add-ons
— Expand JVM-based Tools

— Select “IBM Monitoring and Diagnostics Tools for Java — Health
Center”

— Click Next, accept the license
— Click Next, confirm the tool selected, Click Install

— The Eclipse update mechanism will install the Health Center plug
in into IBM Support Assistant

http://www.ibm.com/software/support/isa/workbench.html

How to launch the client

" |n IBM Support Assistant go to the Home tab
= Click Analyze Problem

= Select Health Center in the Tools Catalog, click Launch

®a Tools - IBM Support Assistant Workbench

File Administration Update Window Help
Support Assistant

(i ol =N ==, Analyze Problem x

& T Tools (=l Collect Data & Guided Troubleshooter

Case/Incident

default

Tools Catalog Find New Tool Add-ons

Tool Name

I IBM Monitoring and Diagnostic Tools for Java™ - Dump Analyzer
IBM Monitoring and Diagnostic Tools for Java™ - Garbage Collection and Memory Visualiz:

| IBM Monitoring and Diagnostic Tools for Java™ - Health Center

IBM Monitoring and Diagnostic Tools for Java™ - Interactive Diagnostic Data Explorer

IBM Monitoring and Diagnostic Tools for Java™ - Memory Analyzer

4| 1

[Launch] [Submit Feedback] l Help l

IBM Health Center Demonstration

_& Connection - IBM Support Assistant Workbench | == X

File Administration Update Data Monitored VM Window Help
Support Assistant

® 9| = &I?ﬂlﬁl_

Bl Status 32 | =
Your application has loaded 2,295 classes and unloaded 3 classes. Make sure you have
® Classes & class sharing enabled with the -Xshareclasses option to save memory and reduce JVM
startup time.
® Environment & No configuration problems were detected.

The application seems to be using some quite large objects. The largest request which

m ; ;
Garbage Collection & triggered an allocation failure was for 1460 KB.

o /O @ No problems detected
@ Locking @ Mo problems detected.
® Method Trace @
- Native Memory & The current memory usage does not indicate any memory leaks.
i - Execution time was relatively evenly balanced between methods. No obvious
Pro—flhng 9 candidates for optimization were found.
¥ Threads @ Your application has 38 threads

The 2.1 release of Health Center contains a powerful API. The API allows Java™
developers to embed Health Center in their applications

With a few lines of code, you can embed the monitoring power of Health Center
in your own Eclipse based application and harness its monitoring power to
troubleshoot problems

// Create the connection object:

ConnectionProperties connl = new ConnectionProperties("localhost™, 1973);
// Connect to the Health Center agent, using the previous connection

// settings:

HealthCenter hcObject = HealthCenterFactory.connect (connl, true);

// Get garbage collection data and print:

GCData gchata = hcObject.getGCData () ;

System.out.println ("GC Mode is " + gcData.getGCMode () .toString());

Detailed steps with screen shots in online articles (see final slide)
Online articles have code samples to get started with

Download and install Eclipse 3.4 or above from eclipse.org

Use the Health Center update site to install the APl into Eclipse
Create a new Rich Client Platform (RCP) project

Add the Health Center API plugin to the build path of the project
Start coding to the API

Coding Example: Deadlock Detection

import org.eclipse.equinox.app.Ifpplication;

import org.eclipse.equinox.app.IApplicationContext;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.MessageBox;

import org.eclipse.swt.widgets.Shell;

import com.ibm.java.diagnostics.healthcenter.api.ConnectionProperties;

import com.ibm.java.diagnostics.healthcenter.api.HealthCenter;

import com.ibm.java.diagnostics.healthcenter.api.factory.HealthCenterFactory;
import com.ibm.java.diagnostics.healthcenter.api.threads.ThreadsData;

f&&
* This class controls all aspects of the application’'s execution
=

public class Application implements IApplication {

HealthCenter hcMon; Set up connection properties

public Object start(IApplicationContext context) throws Exceptig
ConnectionProperties hcConn = new ConnectionProperties();
hcMon = HealthCenterFactory.connect{hcConn, true); = Create a Health Centre
try { connection
System.out.println{"hcMonkaiting for 18 seconds to allow initial data to be parsed
from the connection”);
Thread.sleep({l8888);
} catch (InterruptedException e) {
e.printStackTrace();

¥
checkForDeadlock();

return IApplication.EXIT_OK;

Coding Example continued: Deadlock Detection

public void checkForDeadlock() {
while (!detectDeadlock{)) {
try {
Thread.sleep(5886);
} catch {(InterruptedException e) {
e.printStackTrace();

iy
h

Request Threads data
private boolean detectDeadlock() { /
ThreadsData hcthreadsData = hcMon.getThreadsData();

if (hcthreadsData == null) {
System.out.println{"No threads yet");
1 else {
if (hcthreadsData.deadlockDetected()) { - Check for a thread deadlock
Display display = new Display();
Shell shell = new Shell{display);
MessageBox mb = new MessageBox(shell);
String deadlockMessage = new String();
String[] hcThreadsRec = hcthreadsData
.getCriticalRecommendations(); - Access the threads

for (5tring rec : hcThreadsRec) { recommendations
deadlockMessage = deadlockMessage + rec + "'n";
b

mb.setMessage(deadlockMessage);
mb.setText("Deadlock detected");
mb.open{);

display.dispose();

, return true; \ Display the deadlock

¥ detected message

return false;

* Headless mode for data collection without connecting the GUI
— Useful for scenarios where firewall blocks connection
— Configurable to limit disk space used
— Timed collections
— Interval based collections
— Started with
-Xhealthcenter:level=headless
— Output: .hcd data files. Open in GUI client or with API.

= Late Attach enabled
= Automated javacore creation

Quick contacts

" YouTube videos for a quick introduction to the tools
* @IBM JTC Twitter feed

Email javatool@uk.ibm.com for tools support

http://www.youtube.com/user/ibmjtc
http://www.youtube.com/user/ibmjtc
http://twitter.com/IBM_JTC
http://twitter.com/IBM_JTC
mailto:javatool@uk.ibm.com
mailto:javatool@uk.ibm.com

Where to find more information

IBM Monitoring and Diagnostic Tools for Java™ on developer\Works
http://www.ibm.com/developerworks/javal/jdk/tools/

http://tinyurl.com/IBMJavaTools

Health Center API documentation online (it's also in the client help menu)

Health Center API articles
Monitor a Java application with the Health Center API parts 1 and 2
http://www.ibm.com/developerworks/library/j-healthcareapil/index.html
http://www.ibm.com/developerworks/library/j-healthcareapi2/index.html

IBM Support Assistant (ISA) Workbench

http://www.ibm.com/software/support/isa/workbench.html

http://www.ibm.com/developerworks/java/jdk/tools/
http://tinyurl.com/IBMJavaTools
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/topic/com.ibm.java.diagnostics.healthcenter.doc/api/index.html
http://pic.dhe.ibm.com/infocenter/isa/v4r1m0/topic/com.ibm.java.diagnostics.healthcenter.doc/api/index.html
http://www.ibm.com/developerworks/library/j-healthcareapi1/index.html
http://www.ibm.com/developerworks/library/j-healthcareapi2/index.html
http://www.ibm.com/software/support/isa/workbench.html

