
© 2013 IBM Corporation

Neil Masson – IBM Java L3 Service

24th September 2013

Security in the Real World

© 2013 IBM Corporation

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

 IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

 IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE
USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

 - CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

2

© 2013 IBM Corporation

About me

Neil Masson



Employed by IBM

Worked on Java since the year dot (2...)

 In Core team dealing with all kinds of customer issues

3

© 2013 IBM Corporation

An understanding of the most common attack vectors used to target Java.



An insight into the details of some example vulnerabilities.



An understanding of the current importance of security in the context of the Java platform.



Some ideas of how you can write more secure code.

What should you get from this talk?

© 2013 IBM Corporation

"The only secure computer is one that's unplugged, locked in a safe,
and buried 20 feet under the ground in a secret location... and I'm
not even too sure about that one"
-- (attributed) Dennis Huges, FBI.



A complex system will have many attack vectors



Systems need to balance stability, performance and security

The problem with keeping anything secure

© 2013 IBM Corporation

■

Java and the Java Virtual Machine provide
defense in depth
–Class loaders
–Verification
–Access Controller / Security Manager
–Java Cryptography Extensions (JCE)
–Java Secure Sockets Extension (JSSE)
–Java Authentication and Authorization
Service (JAAS)



Available implicitly or explicitly during
development / deployment



Security is expected to be a trusted resource
–It just works
–It has been verified (thoroughly) by vendors



Be aware of what isn’t secured!



Key: Java should negate the need to build (and
verify!) your own security layers

Security that doesn’t interfere

© 2013 IBM Corporation

Some things you get “for free”

Others you use when you ask for them

Diagram Reference: Java Security, Scott Oaks, O’Reilly Media, May 24, 2001, Second Edition, ISBN-10: 0596001576, ISBN-
13: 978-0596001575

Security Layers in Java

© 2013 IBM Corporation

Common attack vectors

The most common attack vectors in the context of Java fall into four categories:
– Untrusted Data
– Untrusted Code
– Applet / Browser
– Local



Through the rest of the talk we will look at each in a little more detail

© 2013 IBM Corporation

Attack Vectors: Untrusted Data

The untrusted data vector is exploitable when an application parses a specific data type from an
untrusted source.
– The vulnerability may exist in the application code or underlying JDK code.



For example,
– You are using an image parsing module that contains a vulnerability that can lead to an infinite
loop when the image file is crafted in a specific manner.

– If your server application allows users to upload images for parsing an attacker could create a
Denial of Service attack by uploading maliciously formed images.



This type of problem has widely varying consequences, from DOS attacks through to arbitrary
code execution

© 2013 IBM Corporation

Double.parseDouble Denial-of-Service Attack (CVE-2010-4476)

© 2013 IBM Corporation

Double.parseDouble

Old but special

The Alert was officially published in Febuary 2011



Is a very worthy inclusion because:
• It was the first alert to cause real panic
• Easily exploitable & Pervasive

© 2013 IBM Corporation

Double.parseDouble

The problem

A bug had been present in Double.parseDouble since early versions of the JDK.



Passing "2.2250738585072012e-308" to the method causes an infinite loop.



The catalyst was a determination of just how easy it was to exploit
–Populating header fields in webserver requests with the value resulted in a DOS attack.

–



© 2013 IBM Corporation

Double.parseDouble

The result

A fix was made very quickly



The ease of exploit and pervasiveness of the vulnerability resulted in a huge exercise to update
products distributing the JDK.



Fixes were provided right back to 1.3.1 and on obscure platforms like OS/2.


© 2013 IBM Corporation

Hashing Denial-of-Service Attack (CVE-2011-4858)

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

 String hash codes and hashing structures have been around “for ever”



 The attack is possible through a combination of:
– Performance short comings
– Documented / predictable behavior



Can be used to exploit vulnerabilities in existing software



 Algorithmic Complexity Attack

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How String Hashing Works

String hashing algorithm is well known and reversible

It is easy to construct strings that have identical hash codes

== 2112

==
2031744

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

Array to hold the various
<key,value> pairs

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

Array to hold the various
<key,value> pairs

Use the hash code for
“QuantityAa”
to find a location in
the array

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

< “QuantityAa”, “1234” >
Find the appropriate
“bucket” and add the
entry

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

< “QuantityAa”, “1234” >

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

< “QuantityAa”, “1234” >

< “QuantityBB”, “987” >

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

HashMap

< “QuantityAa”, “1234” >

< “QuantityBB”, “987” >

Warning: Lookup / Insertion
requires a string
comparison!!!

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

How Hashing Structures Work

Keys with identical hashes will always fall into the same bucket

HashMap

< “QuantityAa”, “1234” >

< “QuantityBB”, “987” >

Warning: Lookup / Insertion
requires a string
comparison!!!

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

The Danger of strings as Keys in Hashing Structures

Deep buckets with malicious keys can cause serious performance issues

HashMap

< “AaAaAaAaAa … AaAaAa”, “1234” >

< “AaAaAaAaAa … AaAaBB”, “987” >

Near duplicate string with difference at the end

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

The primary exploit

Websites make use of parameters as part of client / server communication

The Server is responsible for managing the parameters for the servlet

Hash structures are a typical way of managing these <key,value> pairs



Issue: Long insert / lookup times for parameters that have high hash collision rate







Result: Web servers could be effectively “disabled” with simple requests



Reference: http://www.nruns.com/_downloads/advisory28122011.pdf

http://www.nruns.com/_downloads/advisory28122011.pdf

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

Current Solution

Hashing structures now use an alternate hash code for String
– Use alternate only at a certain capacity
– Algorithm where the hash code cannot be calculated externally



Why not modify String.hashCode()?
– It’s spec!
– Reliance in existing software



NOTE: With alternate hash, iteration order is now changed!
– Spec’d as “unspecified”
– Doesn’t matter – code relies on this any way
– Solution can cause existing working software to fail!

© 2013 IBM Corporation

Hashing Denial-of-Service Attack

Current Solution

The JVM now supports a system property to enable the behavior at thresholds:
•

-Djdk.map.althashing.threshold=<threshold>



Apache Tomcat property maxParameterCount to limit number of parameters

© 2013 IBM Corporation

Attack Vectors: Untrusted Code

Untrusted code originates from an unknown or untrusted source
– It is not under the application environments control
– It is not know to be benign.
– It should be treated with caution



Typically executed via an unsigned applet or webstart application
– Browser based client side exploit
– The JDK security sandbox offers protection



The attack vector works due to vulnerabilities that allow the untrusted code to escape the confines
of the sandbox, sometimes disabling it completely.
– Allows the code to do whatever it likes.



While most common on the client side the vulnerability applies equally to any environment where
code executes under a security manager.

© 2013 IBM Corporation

Gondvv Vulnerability (CVE-2012-4681)

© 2013 IBM Corporation

Java Security Manager Bypass (Gondvv)

Imagine visiting a website and your calculator application pops up







How did that happen?



Arbitrary code has been run on your machine – how compromised are you?

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Set the security permissions to that
of the current code (privileged) in
place of the callers security permissions

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Use reflection to acquire a Field object
on the given class

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

The key change to sun.awt.SunToolkit

A simple access modifier change (within a larger change) exposed a vulnerability

Set the reflect object Field usage to
ignore access checks. Privileged action
permitted through doPrivileged()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

sun.awt
SunToolkit

findClass()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

findClass()

AccessControlContext

“setSecurityManager()”

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

findClass()

AccessControlContext

“setSecurityManager()”

getField()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

findClass()

AccessControlContext

“setSecurityManager()”

getField()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

execute() Elevated permissions for sandbox

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

java.lang
Runtime

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

execute() Elevated permissions for sandbox

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

java.lang
Runtime

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

execute() Elevated permissions for sandbox

exec(“…”)

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

How the exploit works
com.sun.beans.finder

ClassFinder

java.beans
Statement

sun.awt
SunToolkit

java.lang.reflect
Field

java.lang
Runtime

findClass()

AccessControlContext

“setSecurityManager()”

getField()
Elevated permissions for statement

execute() Elevated permissions for sandbox

exec(“…”)

set()

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

Epilogue



Needed to be running untrusted code



Java7 VM required
• Most users were still at 6.0



A simple change to an access modifier exposed the entire system



NOTE: A fix was turned around in very short order

Java Security Manager Bypass (Gondvv)

© 2013 IBM Corporation

Method Handles

© 2013 IBM Corporation

Method Handles

JSR 292: Supporting Dynamically Typed Languages on the JavaTM Platform
– A new bytecode for custom dynamic linkage (invokedynamic)
– MethodHandle (and support classes) as a “function pointer” interface for linkage

–

Fast invocation of bound methods
– Method handle invocation speed can be far superior to reflect methods
–

A MethodHandle resembles java.lang.reflect.Method
– Access checking is performed at lookup, not at every call
– Conversion available from reflection side to MethodHandle types

© 2013 IBM Corporation

Method Handles

Access and Security Checks

Reflection MethodHandles

SecurityManager checks at lookup Yes Yes

Access checks at lookup No Yes

Access checks at invocation Yes No

Checks at setAccessible(true) Yes N/A

Anyone can invoke? No: by default
Yes: setAccessible(true)

Yes – by default

© 2013 IBM Corporation

Method Handles

Security Where It Matters

© 2013 IBM Corporation

Method Handles

A Word of Caution

The lookup mechanism has interesting privilege characteristics
–Be careful about what code has access to it

© 2013 IBM Corporation

"New Year Day" / "EveryDay" (CVE-2013-0422)

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

A combination of exploits

Client side applet based attack



A combination of two vulnerabilities
• The ability to access privileged classes via JMX
• A reflection issue in MethodHandles that prevented correct access checks
•

Easy to exploit





© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

The escalation class implements privileged action

The action sets the SecurityManager to Null

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

The bytes are stored in an array in the applet.

Applet

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

Next we aquire an instance of MbeanInstantiator via the public API
JmxMBeanServer.getMBeanInstantiator().

Applet

com.sun.jmx.mbeanserver
MBeanInstantiator

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

The findClass method is used to obtain two private classes

Applet

com.sun.jmx.mbeanserver
MBeanInstantiator

findClass()

sun.org.mozilla.javascript.internal
Context

sun.org.mozilla.javascript.internal
GeneratedClassLoader

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

A local instance of MethodHandles.lookup is created

Applet

com.sun.jmx.mbeanserver
MBeanInstantiator

findClass()

sun.org.mozilla.javascript.internal
Context

sun.org.mozilla.javascript.internal
GeneratedClassLoader

java.lang.invoke
MethodHandles

Local Lookup

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

This is then used to create a method Handle to the findConstructor method in the
MethodHandles class

Applet

com.sun.jmx.mbeanserver
MBeanInstantiator

findClass()

sun.org.mozilla.javascript.internal
Context

sun.org.mozilla.javascript.internal
GeneratedClassLoader

java.lang.invoke
MethodHandles

java.lang.invoke
MethodHandle

“java.lang.invoke.MethodHandles.
FindConstructor”

Local Lookup

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

When invoked against our Context class we obtain a new methodHandle that allows us to
create an instance of Context

Applet

com.sun.jmx.mbeanserver
MBeanInstantiator

findClass()

sun.org.mozilla.javascript.internal
Context

sun.org.mozilla.javascript.internal
GeneratedClassLoader

java.lang.invoke
MethodHandles

java.lang.invoke
MethodHandle

“java.lang.invoke.MethodHandles.
FindConstructor”

Local Lookup

java.lang.invoke
MethodHandle

“sun.org.mozilla.javascript.internal
Context()”

sun.org.mozilla.javascript.internal
Context

Context Object

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

The same technique is used to create methodHandles for Context.createClassloader and
GeneratedClassLoader.defineClass

Applet

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
Context.createClassLoader()”

sun.org.mozilla.javascript.internal
Context

Context Object

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
GeneratedClassLoader.

defineClass()”

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

A classloader object is created

Applet

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
Context.createClassLoader()”

sun.org.mozilla.javascript.internal
Context

Context Object

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
GeneratedClassLoader.

defineClass()”

sun.org.mozilla.javascript.internal
GeneratedClassLoader

ClassLoader
Object

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

Enabling the defineClass method to be called, passing our escalation class bytes.

Applet

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
Context.createClassLoader()”

sun.org.mozilla.javascript.internal
Context

Context Object

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
GeneratedClassLoader.

defineClass()”

sun.org.mozilla.javascript.internal
GeneratedClassLoader

ClassLoader
Object

Escalation Class
Loaded Class

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

How it worked




Escalation Class

Create an instance of it, and the security manager is disabled.

Applet

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
Context.createClassLoader()”

sun.org.mozilla.javascript.internal
Context

Context Object

java.lang.invoke
Methodhandle

“sun.org.mozilla.javascript.internal
GeneratedClassLoader.

defineClass()”

sun.org.mozilla.javascript.internal
GeneratedClassLoader

ClassLoader
Object

Escalation Class
Loaded Class newInstance()

© 2013 IBM Corporation

"New Year Day" / "EveryDay"

The resolution

JDK 7u11 included the “fix”
–Reports suggest only the reflection exposure was closed.
–The default security level was changed to ensure users are always prompted before running
unsigned or self signed content.

–

This was implementation dependent, the IBM JDK was not affected.

© 2013 IBM Corporation

Attack Vectors: Applet / Browser, Local

Applet / Browser
– These vulnerabilities are specific to applications running in or via the browser
– The vulnerability exists either in the plugin or browser, or it is in the underlying JDK but only
exposed when run in the browser environment.

–

Local
– The local vector requires an attacker to have access to the system on which the JDK is
running.

– A simple example would be an application writing data to a temporary file before sending it to a
printer.
• If the files are created with inappropriate permissions any user on the system could access
them.

© 2013 IBM Corporation

And after all that…

© 2013 IBM Corporation

Security is Important to Java

What’s being done about security?

IBM and Oracle are working to ensure Java is (and remains) secure!
–http://www-03.ibm.com/security/secure-engineering/
–http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Reporting Issues:
–http://www-03.ibm.com/security/secure-engineering/report.html
–http://www.oracle.com/us/support/assurance/reporting/index.html

Writing more secure code:
– Read and adhere to Oracles “Secure Coding Guidelines”:

–http://www.oracle.com/technetwork/java/seccodeguide-139067.html



http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www-03.ibm.com/security/secure-engineering/report.html
http://www.oracle.com/us/support/assurance/reporting/index.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

© 2013 IBM Corporation

Conclusions

Java Security is defense in depth



Trust, but Verify



Java and JVM designed to provide security at a low cost to developers



Many moving parts in security – Things can go wrong, but quick to resolve
–Security is Hard – Rolling your own is even worse

	IBM Presentation Template Full Version
	Important Disclaimers
	About me
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

