
© 2013 IBM Corporation

New JVM Features –
Multitenancy and Packed Objects

Neil Masson – Java L3 Service Core Teamt
24th September 2013

2 © 2013 IBM Corporation

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF
THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”,
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN
A CONTROLLED ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON
HARDWARE, SOFTWARE OR INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S
CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY
IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR
ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE
EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED
COMPANIES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS

3 © 2013 IBM Corporation

Introduction to the speaker

■ Neil Masson

■ Many (many) years experience in Java

■ IBM Service – Core L3 Team

4 © 2013 IBM Corporation

What should you get from this talk?

■ JVM proving to be a fertile ecosystem for languages

■ Plenty of opportunity to innovate in other spaces

■ Runtime is the gateway to this innovation

■ Largely ignored the last few years, but this is where the core inventions can occur

5 © 2013 IBM Corporation

The runtime isn’t boring!

6 © 2013 IBM Corporation

Multitenancy

7 © 2013 IBM Corporation

Just what do you mean by “multitenancy”?

With a multitenant architecture, a software application is designed
to virtually partition its data and configuration, and each client
organization works with a customized virtual application
instance.

■ Working Definition
– A single instance of a software application that serves multiple customers

 Each customer is a tenant.
– Tenants can customize some parts of the application (look and feel) but not the code.
– Infrastructure usually opaque

 opportunity for provider

Why? Cost Savings: As compared to single-tenant deployment model

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Partition_(mainframe)

8 © 2013 IBM Corporation

S5. Shared
Application

JDK Support for Spectrum of Sharing / Multitenancy (Level 1-5)

S1. No Sharing

Infrastructure

Middleware

Application

Tenant

OS

Middleware

Application

Tenant

OS

Infrastructure

Middleware

Application

Tenant

OS

Middleware

Application

Tenant

OS

Infrastructure

Data Center floorData Center floor

Middleware

Application

Tenant

Middleware

Application

Tenant

Infrastructure

Data Center floor

OS

Application

Tenant

Application

Tenant

Infrastructure

Data Center floor

OS

Middleware

Application
data

Tenant Tenant

Infrastructure

Data Center floor

OS

Middleware

Application

S2. Shared
Hardware

S3. Shared
Operating System

S4. Shared
Middleware

Application
data

Application
data

Application
data

Application
data

Application
data

Application
data

Application
data

Application
data

Application
data

Sharing servers
storage, networks in a
data center

Hypervisors (e.g. KVM,
VMWare) are used to
virtualize the hardware

Multiple applications
sharing the same
middleware

Sharing the same
application

Multiple copies of
middleware in a single
operating system

Application
Changes

Application
Changes? Application

Changes

9 © 2013 IBM Corporation

= Application
Changes

10 © 2013 IBM Corporation

Hardware Virtualization

■ Hypervisors run multiple applications side-by-side safely

■ Advantages
– Capture idle CPU cycles
– Automatic de-duplication (RAM)
– Ability to meter and shift resource toward demand
– No need to change tenant applications

Hypervisor

Hardware

tenant tenant tenant tenant

11 © 2013 IBM Corporation

Hardware Virtualization

■ Hypervisors JVMs can run multiple applications side-by-side safely

■ Advantages
– Capture idle CPU cycles
– Automatic de-duplication (ability to share Java artifacts)
– Ability to meter and shift resource toward demand
– No need to change tenant applications

Hypervsisor

Hardware

tenant tenant tenant tenant

Java VM

Operating System

12 © 2013 IBM Corporation

Multitenancy: Low (or no) barrier to entry

■ Multitenancy is all about reducing duplication by transparently sharing a JVM
– 1 GC, 1 JIT, shared heap objects
– plus: JVM-enforced resource constraints to meter and limit consumption

■ Ergonomics: Opt-in to multitenancy with a single flag: -Xmt (multitenancy)
– no application changes required

javad

Tenant1

Tenant2

One copy of common code + data
lives in the javad process.

13 © 2013 IBM Corporation

JVM: Separating State

■ Static variables are a problem for sharing

■ Consider the effect of global defaults

 private static volatile TimeZone defaultTimeZone;

java.util.TimeZone

14 © 2013 IBM Corporation

JVM: Separating State

■ Use @TenantScope annotation

■ Each tenant has its own version of defaultTimeZone

■ All JVM classes annotated

 @TenantScope
 private static volatile TimeZone defaultTimeZone;

java.util.TimeZone

15 © 2013 IBM Corporation

Tenants: Separating State

■

TenantClassLoader

BootstrapClassLoader

SystemClassLoader

ApplicationClassLoader

TenantClassLoader

Core classes
eg java.lang, java.util, ...

Other JVM classes
eg swing, SQL, ...

ClassPath

16 © 2013 IBM Corporation

Tenants: Separating State

■

TenantClassLoader

BootstrapClassLoader

SystemClassLoader

ApplicationClassLoader

TenantClassLoader

Class AClass A Class A

Delegating ClassLoaders only
see classes in their parent Classloaders

Class A != Class A

17 © 2013 IBM Corporation

More that just JVM State…

■ Throttling of resources
– Threads, GC, sockets, files (IO in general), native memory

■ Past and existing examples do exist!
– Commercial / In house custom solutions
– JSR 181 Isolates / 284 Resource Management

■ Security is of course huge

18 © 2013 IBM Corporation

Other Thoughts – Native Libraries and shared state

■ Use separate processes to manage different state

■ Each process now holds the context

■ Challenges: Latency

Tenant1

Tenant2

JVM

Proxy
Library

Shared
Library

Shared
Library

Tenant1

Tenant2

JVM

Shared
Library

Shared
State!

■ Native libraries contain state that may not be shareable across tenants

19 © 2013 IBM Corporation

Questions?

20 © 2013 IBM Corporation

Packed Objects

21 © 2013 IBM Corporation

Problem? What problem?

■ JNI just isn’t a great way to marshal data

■ Locality in Java can matter

■ Existing native and data placement stories aren’t very good

■ In many cases, legacy systems exist – the interop is just terrible

■ So we want something that integrates well with the Java language and helps us…

22 © 2013 IBM Corporation

What are we trying to solve?

Simple enough…

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value

23 © 2013 IBM Corporation

What are we trying to solve?

Simple enough…

■ Header overhead

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value

24 © 2013 IBM Corporation

What are we trying to solve?

Simple enough…

■ Header overhead

■ Pointer chasing

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value

25 © 2013 IBM Corporation

What are we trying to solve?

Simple enough…

■ Header overhead

■ Pointer chasing

■ Locality

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value

26 © 2013 IBM Corporation

What are we trying to solve?

int
int

Object header

Fields / data

Java Native

…

int[] d

anObject

Fighting the Java/Native interface

int
int

int
…

27 © 2013 IBM Corporation

Ok so we have some criteria…

■ Ability to do away with headers

■ Ability to bring multiple objects close together

■ On heap / off heap seamless referencing of data

■ This actually sounds a lot like C structure types

■ Packed Objects!

struct Address {
 char[4] addr;
 short port;
}
struct Header {
 struct Address src;
 struct Address dst;
}

struct Header

port
addr

Address src

Address dst
port

addr

28 © 2013 IBM Corporation

Packed Objects: Under the covers

int y
int x

aPoint

Object header

Object field / data

29 © 2013 IBM Corporation

Packed Objects: Under the covers

int y
int x

aPoint

offset
target

aPackedPoint

int y
int x

Object header

Object field / data

30 © 2013 IBM Corporation

Packed Objects: Under the covers

int y
int x

aPoint

Object header

Object field / data

offset
target

aPackedPoint

int y
int x

31 © 2013 IBM Corporation

Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

Object header

Object field / data

32 © 2013 IBM Corporation

Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

aPackedLine

offset
target

Object header

Object field / data

33 © 2013 IBM Corporation

Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

aPackedPoint s

aPackedPoint e

aPackedLine

offset
target

Object header

Object field / data

34 © 2013 IBM Corporation

Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

aPackedPoint s

aPackedPoint e

@Packed
final class PackedPoint extends PackedObject {

int x;
int y;

}

@Packed
final class PackedLine extends PackedObject {

PackedPoint s;
PackedPoint e;

}

aPackedLine

offset
target

Object header

Object field / data

35 © 2013 IBM Corporation

Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

PackedPoint p = aPackedLine.e

offset
target

aPackedPoint

aPackedLine

offset
target

Object header

Object field / data

36 © 2013 IBM Corporation

Packed Objects: In Practice with Native Access

int y
int x

Java Native

struct Point {
 int x;
 int y;
}

37 © 2013 IBM Corporation

Packed Objects: In Practice with Native Access

int y
int x

offset
target

aPackedPoint

Java Native

struct Point {
 int x;
 int y;
}

@Packed
final class PackedPoint
 extends PackedObject {

int x;
int y;

}

Object header

Object field / data

38 © 2013 IBM Corporation

Packed Objects: In Practice with Native Access

int y
int x

offset
target

aPackedPoint

Java Native

struct Point {
 int x;
 int y;
}

Ø

@Packed
final class PackedPoint
 extends PackedObject {

int x;
int y;

}

Object header

Object field / data

39 © 2013 IBM Corporation

Lets Build Something in C!

■ Nested substructures

■ Compact representation

■ Alignment aspects

struct Address {
 char[4] addr;
 short port;
}
struct Header {
 struct Address src;
 struct Address dst;
}

struct Header

port
addr

Address src

Address dst
port

addr

40 © 2013 IBM Corporation

Let’s Build the Same “Something” in Java!

■ Headers

■ No locality

■ Alignment

class Address {
byte[] addr;
short port;

}

class Header {
Address src;
Address dst;

}

Address

port
addr

addr
Header

Address dst
Address src

Address

port
addr

addr

byte[]

byte[]

41 © 2013 IBM Corporation

What if we did this with Packed Objects?

■ The Java code is pretty clean… and a pretty good result!

@Packed
final class Address extends PackedObject {

PackedByte[[4]] addr;
short port;

}

@Packed
final class PacketHeader extends PackedObject {

Address src;
Address dest;

}

port
addr

Address src

Address dst

port
addr

offset
target

aPacketHeader

42 © 2013 IBM Corporation

What about native access?

Java Native

…

anObject

How do we implement this normally?

port
addr

port
addr

43 © 2013 IBM Corporation

JNI implementation

■ Usual “stash pointers in long types” tricks

■ JNI costs tend to be high

44 © 2013 IBM Corporation

DirectByteBuffer implementation

■ No extra JNI to write (this is good)

■ Keeping your indices straight is never fun

45 © 2013 IBM Corporation

Unsafe implementation

■ You shouldn’t be here

■ Still playing the indices game

46 © 2013 IBM Corporation

PackedObject answer

■ Looks like natural Java code

■ Foregoes JNI

■ Same type capable of on-heap representation

port
addr

port
addr

offset
target

aPacketHeader

Ø

47 © 2013 IBM Corporation

Active work and next steps

■ Experimenting with this now

■ Yes, there are security aspects to be aware of here

■ This is potentially part of a larger look at Java / Platform interop

■ Not specifically viewed as a cure to GC problems

■ This forms the basis for many other solutions to existing problems…

48 © 2013 IBM Corporation

Questions?

49 © 2013 IBM Corporation

References

■ Get Products and Technologies:
– IBM Java Runtimes and SDKs:

• https://www.ibm.com/developerworks/java/jdk/
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/

■ Learn:
– IBM Java InfoCenter:

• http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp

■ Discuss:
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/tools/
https://www.ibm.com/developerworks/java/jdk/tools/
https://www.ibm.com/developerworks/java/jdk/tools/
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

50 © 2013 IBM Corporation

Copyright and Trademarks

© IBM Corporation 2013. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., and registered in many jurisdictions
worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright
and trademark information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

