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Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR 
INFORMATIONAL PURPOSES ONLY. 

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF 
THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, 
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. 

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN 
A CONTROLLED ENVIRONMENT.  YOUR OWN TEST RESULTS MAY VARY BASED ON 
HARDWARE, SOFTWARE OR INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S 
CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY 
IBM, WITHOUT NOTICE. 

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES 
ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR 
ANY OTHER DOCUMENTATION. 

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE 
EFFECT OF: 

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED 
COMPANIES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS
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Introduction to the speaker

■ Neil Masson

■ Many (many) years experience in Java

■ IBM Service – Core L3 Team



4   © 2013 IBM Corporation

What should you get from this talk?

■ JVM proving to be a fertile ecosystem for languages

■ Plenty of opportunity to innovate in other spaces

■ Runtime is the gateway to this innovation

■ Largely ignored the last few years, but this is where the core inventions can occur
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The runtime isn’t boring!
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Multitenancy
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Just what do you mean by “multitenancy”?

With a multitenant architecture, a software application is designed 
to virtually partition its data and configuration, and each client 
organization works with a customized virtual application 
instance.

■ Working Definition
– A single instance of a software application that serves multiple customers

 Each customer is a tenant.
– Tenants can customize some parts of the application (look and feel) but not the code.
– Infrastructure usually opaque

 opportunity for provider

Why?  Cost Savings: As compared to single-tenant deployment model

http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Partition_(mainframe)
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= Application
Changes
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Hardware Virtualization

■ Hypervisors run multiple applications side-by-side safely

■ Advantages
– Capture idle CPU cycles
– Automatic de-duplication (RAM)
– Ability to meter and shift resource toward demand
– No need to change tenant applications

Hypervisor

Hardware

tenant tenant tenant tenant
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Hardware Virtualization

■ Hypervisors JVMs can run multiple applications side-by-side safely

■ Advantages
– Capture idle CPU cycles
– Automatic de-duplication (ability to share Java artifacts)
– Ability to meter and shift resource toward demand
– No need to change tenant applications

Hypervsisor

Hardware

tenant tenant tenant tenant

Java VM

Operating System
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Multitenancy: Low (or no) barrier to entry

■ Multitenancy is all about reducing duplication by transparently sharing a JVM
– 1 GC, 1 JIT, shared heap objects
– plus: JVM-enforced resource constraints to meter and limit consumption

■ Ergonomics: Opt-in to multitenancy with a single flag: -Xmt (multitenancy)
– no application changes required

javad

Tenant1

Tenant2

One copy of common code + data
lives in the javad process.
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JVM: Separating State

■ Static variables are a problem for sharing

■ Consider the effect of global defaults 

    private static volatile TimeZone defaultTimeZone;

java.util.TimeZone
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JVM: Separating State

■ Use @TenantScope annotation

■ Each tenant has its own version of defaultTimeZone

■ All JVM classes annotated 

    @TenantScope
     private static volatile TimeZone defaultTimeZone;

java.util.TimeZone
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Tenants: Separating State

■  

TenantClassLoader

BootstrapClassLoader

SystemClassLoader

ApplicationClassLoader

TenantClassLoader

Core classes 
eg java.lang, java.util, ...

Other JVM classes
eg swing, SQL, ...

ClassPath
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Tenants: Separating State

■  

TenantClassLoader

BootstrapClassLoader

SystemClassLoader

ApplicationClassLoader

TenantClassLoader

Class AClass A Class A

Delegating ClassLoaders only
see classes in their parent Classloaders

Class A != Class A
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More that just JVM State…

■ Throttling of resources
– Threads, GC, sockets, files (IO in general), native memory

■ Past and existing examples do exist!
– Commercial / In house custom solutions
– JSR 181 Isolates / 284 Resource Management

■ Security is of course huge
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Other Thoughts – Native Libraries and shared state

■ Use separate processes to manage different state

■ Each process now holds the context

■ Challenges: Latency

Tenant1

Tenant2

JVM

Proxy 
Library

Shared 
Library

Shared 
Library

Tenant1

Tenant2

JVM

Shared
Library

Shared
State!

■ Native libraries contain state that may not be shareable across tenants
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Questions?
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Packed Objects
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Problem?  What problem?

■ JNI just isn’t a great way to marshal data

■ Locality in Java can matter

■ Existing native and data placement stories aren’t very good

■ In many cases, legacy systems exist – the interop is just terrible

■ So we want something that integrates well with the Java language and helps us…



22   © 2013 IBM Corporation

What are we trying to solve?

Simple enough…

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value
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What are we trying to solve?

Simple enough…
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What are we trying to solve?

Simple enough…

■ Header overhead

■ Pointer chasing

■ Locality

Hash

Array

Entry

(object)

(object)

Object header

Object field / data

table
key

value
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What are we trying to solve?

int
int

Object header

Fields / data

Java Native

…

int[] d

anObject

Fighting the Java/Native interface

int
int

int
…
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Ok so we have some criteria…

■ Ability to do away with headers

■ Ability to bring multiple objects close together

■ On heap / off heap seamless referencing of data

■ This actually sounds a lot like C structure types

■ Packed Objects!

struct Address {
   char[4] addr;
   short port;
}
struct Header {
   struct Address src;
   struct Address dst;
}

struct Header

port
addr

Address src

Address dst
port

addr
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Packed Objects: Under the covers

int y
int x

aPoint

Object header

Object field / data
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Packed Objects: Under the covers

int y
int x

aPoint

offset
target

aPackedPoint

int y
int x

Object header

Object field / data
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Packed Objects: Under the covers
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aPackedPoint

int y
int x
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Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

Object header

Object field / data



32   © 2013 IBM Corporation
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Packed Objects: In Practice
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Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

aPackedPoint s

aPackedPoint e

@Packed
final class PackedPoint extends PackedObject {

int x;
int y;

}

@Packed
final class PackedLine extends PackedObject {

PackedPoint s;
PackedPoint e;

}

aPackedLine

offset
target

Object header

Object field / data
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Packed Objects: In Practice

int y
int x

aPoint

int y
int x

aPointPoint e
Point s

aLine

int y
int x

int y
int x

PackedPoint p = aPackedLine.e

offset
target

aPackedPoint

aPackedLine

offset
target

Object header

Object field / data
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Packed Objects: In Practice with Native Access

int y
int x

Java Native

struct Point {
     int x;
     int y;
}
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Packed Objects: In Practice with Native Access

int y
int x

offset
target

aPackedPoint

Java Native

struct Point {
     int x;
     int y;
}

@Packed
final class PackedPoint
    extends PackedObject {

int x;
int y;

}

Object header

Object field / data
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Packed Objects: In Practice with Native Access

int y
int x

offset
target

aPackedPoint

Java Native

struct Point {
     int x;
     int y;
}

Ø

@Packed
final class PackedPoint
    extends PackedObject {

int x;
int y;

}

Object header

Object field / data
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Lets Build Something in C!

■ Nested substructures

■ Compact representation

■ Alignment aspects

struct Address {
   char[4] addr;
   short port;
}
struct Header {
   struct Address src;
   struct Address dst;
}

struct Header

port
addr

Address src

Address dst
port

addr
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Let’s Build the Same “Something” in Java!

■ Headers

■ No locality

■ Alignment

class Address {
byte[] addr;
short port;

}

class Header {
Address src;
Address dst;

}

Address

port
addr

addr
Header

Address dst
Address src

Address

port
addr

addr

byte[]

byte[]
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What if we did this with Packed Objects?

■ The Java code is pretty clean… and a pretty good result!

@Packed
final class Address extends PackedObject {

PackedByte[[4]] addr;
short port;

}

@Packed
final class PacketHeader extends PackedObject {

Address src;
Address dest;

}

port
addr

Address src

Address dst

port
addr

offset
target

aPacketHeader
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What about native access?

Java Native

…

anObject

How do we implement this normally?

port
addr

port
addr
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JNI implementation

■ Usual “stash pointers in long types” tricks

■ JNI costs tend to be high
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DirectByteBuffer implementation

■ No extra JNI to write (this is good)

■ Keeping your indices straight is never fun
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Unsafe implementation

■ You shouldn’t be here

■ Still playing the indices game
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PackedObject answer

■ Looks like natural Java code

■ Foregoes JNI

■ Same type capable of on-heap representation

port
addr

port
addr

offset
target

aPacketHeader

Ø
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Active work and next steps

■ Experimenting with this now

■ Yes, there are security aspects to be aware of here

■ This is potentially part of a larger look at Java / Platform interop

■ Not specifically viewed as a cure to GC problems

■ This forms the basis for many other solutions to existing problems…



48   © 2013 IBM Corporation

Questions?
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References

■ Get Products and Technologies:
– IBM Java Runtimes and SDKs:

• https://www.ibm.com/developerworks/java/jdk/
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/

■ Learn:
– IBM Java InfoCenter:

• http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp

■ Discuss:
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/tools/
https://www.ibm.com/developerworks/java/jdk/tools/
https://www.ibm.com/developerworks/java/jdk/tools/
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0
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