Mobile and IBM Worklight
Best Practices

WebSphere User Group, Edinburgh, 24t Sept 2013

Andrew Ferrier
andrew.ferrier@uk.ibm.com

Agenda

 Recap: Web 2.0 & Mobile Landscape
* Development Time

— Toolkits & Frameworks
* “Run” Time
— RESTful Services and WL Adapters
— Worklight Lifecycle — Build, Test, Deploy

Web 1.0: what we used to do

« Static HTML content, little-
to-no-dynamicity =
Web/App Server
—
—
—

e Server-side-driven content

eeeeeeeeeeeee
ser Session

« Perhaps with a small amount of
JavaScript for effects or form
validation

%

Request >
=
refresh————

Busi

128
B
C
iness logic

« Traditionally written with a

variety of technologies — . :
Servlets, JSPs, PHP, etc. P S S — @

Shared data model

A A\ J

Embrace Web 2.0

)

(@

Partial data
model
(XML, JSON,
Text)

| Web/App Server | N

T XMLHtpRequest — — — — — —— ¥ User Data Model
R Data refresh — — — — — —— — —1 User Session
F——F—-——-—- XMLHttpRequest — — — — — — —
-

. —————— Data refresh— — — — — — — — — 1 w -«"
- — - ———- XMLHttpRequest — — — — — — — 5]
<+ === Data refresh— — — = = — — — — 4

s

f
B — ——— - XMLHttpRequest — — — — — — — >
R — — — — — —| Data refresh = — = = = — — — — { q -

Business logic
| el XMLHttpRequest — — — — — — — >
S Data refresh— — — — — — — — — 4 @

Shared data model
) & /

« Rich client-side
JavaScript

« XHRs for data over
RESTful Services

« JSON Payloads

Hire the Skills Needed!
(The Programming Model)

Understand the Mobile Landscape

Web Mobile Web Hybrid Mobile Native Mobile
o0 Application Application Application Application
=
‘-”l Desktop and mobile using open Mobile only using open web Mobile only, app runs on the Mobile only, developed using
%’ web (HTML, JavaScript) client (HTMLS, JavaScript) client device, but leverages open web native languages or transcode to
3‘ programming models programming models (HTMLS, JS) via JavaScript native via MAP tools
3, bridge
n Limited to no device-specific Off-line capabilities Native appearance and
= functionality Native device capabilities device capabilities, performance
8 (GPS, camera, contacts)

Mimic native appearance

Mobile Browser Execution AppStore download and install

Richness of Mobile Presentation / Services

Portability (cross-device reuse)
| | l

Maintenance Cost (TCO)
|

(dVIN/dVIIN INOY}IM)
s}jo-apel] [euonipes]

Understand Worklight

Native Shell

<IDOCTYPE html PUBLIC
<html>

<! - - created 2003-12-1
<head><title>XYZ</title
</head>

</body>

</html>

Device APIs

(o,

Understand Worklight

SDKs — 1
Worklight Studio Worklight Application Center Device Runtime
HTMLS5, Hybrid Cross-Platform
and Native Coding Development Team Provisioning Compatibility Layer
imizati . Server Integration
Optimization Windows Enterprise App Provisioning Frameworkg
Framework Phone and Governance
: ; Windows 8 Encrypted and

Integrated Device @
SDKgs ; App Feedback Management Syncable Storage

Build Engine

Java ME

3rd PartY_ Library Mobile Web Runtime Skinning
Integration
Desktop Web porting for Statistics

H Diagnostics

Worklight Server

User authentication and Client-Side
mobile trust App Resources

Mashups and service
composition
JSON Translation

Adapter Library Unified Push
backend connectivity Notifications

Worklight Console
Reporting and App Version
Web Apps

Push /SMS
Management

Stats Aggregation

TOOLKITS AND FRAMEWORKS

Use a Toolkit

* JavaScript-based libraries, written in
JavaScript, used on top of JavaScript itself
e Why?
— Smooth out the JavaScript’s rough edges
— Add additional features, Ul widgets, etc.

Showcase Headings

=
Switches!-? >
Swap View!-7 >

@ Icons!-6 >

E Tab Bar1-6 > Pick up a button, any button.
—

H Haadin~e1.6 >

Use Dojo

* The largest players in the market are

& jQuery ()J()

write less, do more.

* Generally, IBM ‘prefers’ Dojo

— Shipped with IBM Worklight, WebSphere
Feature Pack for Web 2.0 and Mobile, etc..

Why Dojo?

Enterprise-grade toolkit and feature set
Stronger support for structuring large
applications

— e.g. Class system (dojo/declare)

Better focus on internationalization,
accessibility, etc.

But jQuery is a supported choice too
for Worklight and still a sensible choice

Consider using framework(s)

* Coding without a JS

toolkit in 2013 is like Your Application
entering the program
In binary Framework

* Frameworks sit on
top of a toolkit, but
gives you other things
that are missing.

Toolkit

HTML CSS

Consider using framework(s)

* For example, a framework might give you:
— Endpoint management (stubbing)
— State / session management
— Responsive Design Benefits (e.g. dojox/app)
— Templating
— Single-page architecture support
— Standardised error-handling
— (... other application-level stuff)

Framework Options

* For Dojo:

— Dojo itself - dojox/mobile, dojox/app, dojox/
mvc

— issw/mobile & issw/pocMobile
— Your own custom framework

* Not as bad an idea as it sounds!
* For jQuery:

— Angular (MVW), mustache (templating),
RequirelS (code loading), Knockout (MVC),
Backbone (MVC), Handlebar (templating)
etc...

Prefer Single Page Architecture

Submit

Submit

HTTP

’
HTTP

Server

Server

MPA

Prefer Single Page Architecture

* (... for mobile at least)
* Only one.html page
* Improves performance

* Dojo Mobile has this concept built in —
dojox/mobile/View

* Reuse this concept for Hybrid too

Understand Debugging Options

iOS 6+: Web Inspector
(Physical & Emulated
Phone)

Android 4.x: Chrome
Remote Debugging

Desktop Browser with
Debugging Support —
Chrome, Firefox + Firebug
(plain or Worklight
simulator)

Worklight logging

Etc...

Community Project:
Style a Description List

A Brief History of the
World Wide Web

RESTFUL SERVICES AND WL
ADAPTERS

RESTful Services

* The world (atleast Uls) = 1 =
are moving to simpler _Ho=
services — : S
— A RESTful style - plain HTTP -

GET, PUT, POST, DELETE \
— JSON as the data format GET hitp:/ /mycorp. con/
* Practically mandatory for
consumption by Web 2.0 “address” 125 aaytown’

}
clients

RESTful Best Practices for Mobile Web

e Use verbs liberally: GET, PUT, POST,
DELETE

— http://mycorp.com/services/ereateCustomer
 Keep them stateless (independent)

e Don’t send data that’s not needed

— Keep payloads small
— Combine related services

* Think about cacheability

* Think about pagination / querying /
sorting

WL Adapters

WL adds adapter framework

— Server-side JS and XML
components

— Client-side invocation using JS
API

* Supports HTTP, JMS, SQL, ©- 1|

adapter

and Cast Iron adapter types e ¥ @

Accounts

Data/Result

— Most common use is HTTP
adapter to integrate with |
JSON/REST or SOAP/HTTP s e

WL Adapters - REST & HTTP

You could use RESTful services directly
from WL container with conventional
XHRs, but you lose:

— WL’ s authentication mechanism for
services

— The ability to use the WL server as a
“choke point”

— WL Logging/Auditing

— Analytics integration — Tealeaf usage is
easier

Re-expose even RESTful services

* Even for services already exposed over
REST, re-expose them using the WL

HTTP Adapter.
— This is comparatively straightforward to
do.

 You can also use SOAP services from
WL

— Abilities are limited at the moment so for
more sophisticated scenarios, consider an
ESB (e.g. Cast Iron)

Consider Service & Adapter Versioning

* For RESTful Services:
URL: /maps/version/2/map?...
Custom HTTP Header: X-Version 2.1
Media Types/Content Negotiation: application/
json;version=1
* Versioning Worklight Adapters requires
renaming them

LIFECYCLE

Library Systems

 Worklight can work with most version
control systems that integrate with
Eclipse

e Common choices:

— Rational Team Concert (packaged w/ WL
as IBM Mobile Development Lifecycle
Solution)

— Git

— Subversion

Library Systems 2

 There are files that
must be excluded as
they are part of WL
generated resources,
see here:

— http://pic.dhe.ibm.com/infocenter/wrklight/
v6romO0/index.jsp?topic=
%2Fcom.ibm.worklight.help.doc%2Fdevref
%2Fr_integrating_with_source contro.html

server

andreoid
css
images
is
native
ssssss
wwWwW
wleli . prop:
other user fil
bin
gen
nnnnnn Resources
libs
s
e
AndroidManif xml
default. prop:
blackberry
css
image:
is
native
ext
www
config.xml
icon.png
splash.png
common
pad / iphone
css
image:
is
native
build
Classes
Cordova. fr work
<applicati deproj
Plugin:
Resources
WorklightSDK
wwWwW
Entitlements. plist
in.
Cordo
ppli
pplication
README. tXt
worklight.plis
nativeResources
eeeeeeeee
packag

Building — Web Components

nnnnnnnnnnnnnnnnnnnn

You will want to automate your build /
(minification)

Worklight Hybrid: Consider a pre-build @
approach for your web code.
— Faster dev time turnaround

Mobile Web: Consider running a build
every time, using e.g. Dojo Build:
http://dojotoolkit.org/reterence-guide/1.9/
build/

Running jslint / jshint to catch JS errors

Building

 Then build WL project itself
* WL provides the <app- iy~

4 ;= HelloWorklight

bU.ilder> and <adapter_ 4 ?iid;:;d

(= images

builder> ANT tasks e s

= native

4 % HelloWorklight
=), JavaScript Resources

4 ;=5 common

— Only builds the Server portion of the — ‘&=

|z] HelloWorklight.css

projects - the .war customisation file, P
o . ¥| icon.png
the .wlapp file, and the .adapter files. , o 5 tmeniong

[z auth.js

— You will need to build the .apk B HelloWorkight

[z messages.js

and .ipa files using platform-native L et terkigntnt
X| application-descriptor.xml
process. = i

== HelloWorklightHelloWorklightAndroid

Building

During build, externalise certain things:

—worklightServerRootUrl in
application-descriptor.xml

—server/conf/worklight.properties

— maxConcurrentConnectionsPerNode
for adapters

— domain, port for the backend service in
adapter.xml

Deploying

* Deploy the .war using relevant application
server method

— Whenever server/conf/* changes

* Deploy the .wlapp and .adapter server-side
portions of the application using <app-
deployer> and <adapter-deployer>
ANT tasks.

Deployment Topology

* Options include:

simpler, newer

— WebSphere Application S
Server ND - familiar T
— WAS Liberty Profile — i
il
l

 Consider HTTPS, load
spraying

Deploying to Phones

* You still need to get the native application
(.ipa, .apk, etc.) onto your user’ s phones.
— Dev Time/Small/Adhoc Projects: Manual install

— Testing lifecycle: AppCenter - comes with WL
server editions

* Install via AppCenter Web or AppCenter App

— B2C: public App Stores (Apple App Store, Google
Play Store)

— B2E: IBM Endpoint Manager or similar

Testing

* Typically you'll want to test:
— Manual Ul on physical phones

e Coverage across devices
— Automated Ul - mocking framework and
automated test tool
* V6.0 - Mobile Test Workbench for Worklight
— (Worklight) Adapters / (Mobile Web) REST @

Services - load / performance / functional
tests - just HTTP

Questions?

Andrew Ferrier
andrew.ferrier@uk.ibm.com

http://dojotipsntricks.com

UPDATES

-
Two Ways to Update - Method 1

 Update your web code
only

 Don’t change the version
number of the application

* Redeploy .wlapp only -

* Implicitly encourages a
“Direct Update” next time
client connects.

rrrrrrrr

Two Ways to Update - Method 2

e Method 2:

— Update web code and
custom native code

— Do update the
application version ool

Overview 4@ B Details
vz

I | u l I l be r type fiter text Bundle id com.Test01
¥ |=-|Application "Test01" Add... | Version*: |1 0
CAIRHOTS Remove

TTTTT

 Include Worklight settings

The Worklight Settings screen enables the app user to change the address

[] [Up
— - Down of the Worklight Server with which the app communicates. . When enabled,
ee
method (App Store, etc.)

Updating Worklight Itself

Upgrade all studio instances and WL
environments

All apps at all existing application versions
need to be re-built (.war/.wlapp/.adapter)
Re-release an app using method 2

— Gets new Device Runtime onto end-users’
phones

But end-users can continue using old app;
wire protocol is backward-compatible

OTHER TIPS & BEST PRACTICES

Client-side Worklight

* Hybrid App: Don’ t optimize for size of
the client like you would do for Mobile
Web

 Nevertheless, there is still a browser
control underneath

* Use WL.Logger. {debug,error}
API, logging in development
environment is customizable, & log the
username on errors

Client-side Worklight

* Understand handling errors on client-
side, in particular adapter invocations:

— http://www.ibm.com/developerworks/websphere/techjournal/
1212 paris/1212 paris.html?ca=drs-

* Use connectOnStartup: false,
with WL.Client.Connect () after
startup - gives more startup control

— Must be done for use of direct updates,
push notifications, authentication, adapter

use

Server-side Worklight JavaScript

* Discourage use of more than one adapter

— Cannot share JavaScript code (can share Java
though)

e Again, understand how to handle errors from
adapter invocations (same article).

* Again, use WL.Logger API - has various levels

of logging, can be configured on server. Log the
username on errors.

— Note: Log level control is currently limited with WAS

