
IBM Confidential

Introducing Code Rally
An interactive racing game built using

IBM tools and runtime

Simple, Interactive, Intelligent, Innovative

Agenda

� Motivation for the Code Rally Game

� Playing the Code Rally Game

� Development of the Code Rally Game

Motivation for the Code Rally Game

Introduction to Code Rally:

• Code Rally is IBM’s latest game focused on the developer community

• Code Rally is first and foremost a fun, social racing game

• Available now for gamers

• Developers can modify features in the source code of the game

Code Rally Objectives:

• Code Rally is meant to increase awareness of the IBM developer
tools and middleware using an interactive multi-player game

• Code Rally is hosted on the IBM SmartCloud, supported by a
Community Site on developerWorks and development is managed on
the open JazzHub platform in an open, interactive environment

• The team wanted a game that could be played with one person or with
multiple people

• Players select and/or design vehicles that race through a chosen track
with obstacles towards a finish line

• Vehicles implement an event driven model where specific events call
methods within the “AI” implementation

• Players submit their vehicles to a game server and play occurs
automatically, resulting in a video of the action, game statistics, and a
view of racer code that is executing

• The game ends once all racers cross the finish line or if the race is not
finished within a reasonable time (5 minutes)

Motivation for the Code Rally Game

Ways to play the game

The user can play the game in many different ways:

1. Download the tech preview mobile client (Android) only and play
on the IBM Smart Cloud

2. Download the java client and play on the IBM Smart Cloud

3. Download the java client and runtime and play locally

Where to get the game?

https://www.ibm.com/developerworks/mydeveloperworks/blogs/code-rally/?lang=en

Let’s play the game

Developing the game

The Code Rally game was managed using:

• Jazz hub (https://hub.jazz.net/)

The Code Rally game was built using:

• Eclipse 4.2.2 (eclipse.org) with the Rational Team Concert plugin

• WebSphere Application Server Developer Tools – Liberty profile
(Eclipse marketplace – marketplace.eclispe.org OR wasdev.net)

• Liberty runtime (wasdev.net)

• IBM Worklight Mobile Application Solution(http://www-
01.ibm.com/software/mobile-solutions/worklight/)

Feedback is always welcome at our Code Rally Forum:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/code-
rally/?lang=en

Or the jazz hub for enhancements or defects:
https://hub.jazz.net/project/Code%20Rally

Code Rally Development & Deployment
Environment

Desktop PC

Runs Code Rally Eclipse plugins

from within

IBM WAS tools for Eclipse (WDT)

Runs IBM WAS Liberty Profile

(for standalone mode)

Cloud Server

Code Rally web application

runs on

IBM WAS Liberty

Profile

(for multi player)

Mobile Phone

Runs Code Rally

mobile app

(Tech preview)

Jazz Hub

Collaboration Environment

Agile dev process

Work item tracking

Code store

Development of the Game

The globally diverse team consisted of: game developers (3 students),
UI developers, a development team leader, product manager,
marketing manager, and a project manager.

The team used 2 week iterations to develop the game. (half a day for
planning, 7.5 days for dev, 2 for testing, a demo to the team at the
end of the iteration).

A weekly project meeting was held to discuss the overall status of the
game including development, testing, graphics, documentation,
samples and legal details.

A daily scrum meeting was help between the game developers and
the development team leader to discuss the progress of the
features for that iteration.

Planning the iteration

At the beginning of the release cycle, the team put together a number of

stories in jazz hub to describe the features of the game and then assigned

work items for each story.

At the beginning of each iteration we would have a meeting where we would

plan the iteration. The work items were reviewed and prioritized based on

building the infrastructure of the game first , followed by nice to have

capabilities. Defects and stories were treated equally and were prioritised

based on the impact on the end user.

Each story had its own point value representing the number of ideal developer

days we estimated the work would take – this point value was assigned in

agreement between development lead and the developers. These point

values helped us assign an appropriate amount of work to each iteration.

Due to the development team being split between the US and UK we held

meetings in the UK afternoon to facilitate the difference in time zones. Any

issues occurring outside the overlapping work hours would be dealt with

via email.

Implementing the work items

The developer team worked on individual laptops (typical config: dual
core CPU, 2GB memory, 150 GB hard drive). Each developer had
their own copy of the development environment (Eclipse, WDT and
Liberty).

Developers ran builds locally on demand as it took <1 minute to build
the project on the development machines. Code was checked-in to
the RTC server throughout the day as a backup and was delivered
to the stream when a functional component of the work was
complete.

As the game grows more complex and we start implementing
automated testing we have migrated to an automated build
process capable of running test suites for us – all within RTC.

Testing during the iteration

After 8 days of development, the team moved into testing and bug
fixing mode.

Due to the complexity of the game, the development team manually
tested the code rally game. We could have automated from the
start but as we did not the technical debt built up.

This greatly impacted the ability to regression test new changes
efficiently. Each change need to have a series of regression tests
manually run and verified.

Intermittent defects were able to get past our testing and we had no
basis for automating multiplatform testing

Demo of the work items implemented

At the end of the iteration, the development team did a demo to the
broader team and stakeholders.

The demo highlighted the new capabilities that were implemented in
the current iteration.

Feedback from the broader team was provided and any usability or
capability suggestions were added as work items for consideration
for future iterations.

This final iteration driver was made available for internal groups to use
or evaluate.

Specific content: Tracks for the game

The first impression of the game is the track.

The track had to be:

• appealing

• easy to see and interpret the track

• not be to overwhelming

• The team decided to provide many different tracks so it would
appeal to a wide audience.

• Some people prefer the typical oval race car track, other prefer a
space track, a swamp, flying in the sky etc.

Which track do you want to play on?

Different tracks that are available for the user to select:

Space track

Pond track

Circuit board trackRace track

Cloud track Desk track

How the graphics were built

Step 1: Draw the graphic by

hand and then trace digitally

input into Adobe Illustrator.

Step 2: Once half the object

is created, use the “Reflect”

action to make a mirrored

copy.

Step 3: Hide parts of the

insect and focus on adding

color and determining

highlights and shadows.

Step 4:Layering the color

and gradients of the insect

allows it to blend nicely

when stacked.

Step 5: Using

“Transparency” , allows the

blending mode and opacity

to create a different effect.

Step 6: By extending the

inner lines across the

outermost line, the divide

tool allows separate of the

segments in the wings.

Step 7: Once all the

components are colored, we

can use “unite” to bring the

insect together.

Step 8: Clean up some of the

loose lines, thicken the

stroke and merge the layers!

Voila – the blue ladybug!

Challenges: Racing the car

The team needed to determine how the car will be raced around the
track. To that end, the car starts at an initial position and needs to
be told where to aim and what to use for acceleration and breaking
values.

The racetrack has a series of invisible “checkpoints” which span
across the width of the road that the vehicle must move between in
order (much like Olympic skiing). The user must aim for a point
along the next checkpoint to get the car to drive through it.

The event driven car API detects and calls methods for:

• Obstacle collision

• Other car collision

• Being off track

• Proximity to other cars

• Proximity to other obstacles

• Stall

Challenges – How to detect collisions

The team used the Separating Axis Theorem to do collision detection
in the game.

If two convex objects are not intersecting, then there exists an axis for

which the projections of the two objects do not overlap.

To picture this concept of "overlapping projections", look at the image
below. In diagram a you see two squares which are clearly not
intersecting. If you were to project their respective images onto the
horizontal axis as pictured, their projections would not intersect
either. As soon as you have found an axis in which these
projections do not overlap, you can assert that the objects do not
intersect. Conversely, the two squares are clearly intersecting in
diagram b.

Challenges – How to detect collisions

Unlike the previous image, objects being tested for collision won't
usually be simple, un-rotated squares. You might be dealing with a
complex polygon with many vertices. You may be wondering then,
what the best way to programmatically project these polygons onto
an axis. You would simply loop over all of a polygon's vertices,
perform a dot product between the vertex and the normalized axis
to be projected on, and store the minimum and maximum result.

When a collision occurs, the corresponding method will be called in
the car AI – how the car reacts to the collision is up to the user.

Development & Project Management Stats

• Code Rally ear file: 20 MB

• UI Plugin for Eclipse: 8MB (mostly made up of car/ track graphics)

• How long it took to develop: 6 months

• How long it took to test: 6 weeks

• Challenges with testing: lack of automation – all testing was
manual which meant our regression detection rate was poor

• Neat things we did with the code: we take source from a user and
compile it on a server – this is impressive as we could create an
IDE in a webpage with the server backend doing the compiling –
you don’t even need the device you are developing in to be able to
compile the code at this point. There are security concerns to doing
this which is a challenge.

• Licensing and legal work: 3 months

Help us make Code Rally better

Should we publish an internet leader board?

Should we award achievements for certain scores? Certain activities
(ie. # of car crashes, # of times off track ,…..)

Should we put together more tracks?

…

What’s happening next?

We are continuing work on improving the game so please provide us
input on what you’d like to see.

The Code Rally team has received interest from professors who
would like to use the game as a fun way of teaching beginner-
advanced Java techniques to their students.

The Code Rally team is looking to have hack-a-thons to enhance the
game – our first is Sunday 24th March in New York. Check out our
website for details.

IBM will continue to highlight the game at various conferences and
forums (ie. WUG, Devoxx, WebSphere Impact, …)

Where do I find out more?

Code Rally Community Site:

This site provides you information on:

– Downloading and Playing the game

– Blogs and Forums to chat with other

games and developer

Jazz Hub for Code Rally:

This site provides you information on:

– Agile development process used

– Development plan

– Features being planned

Backup

IBM tools and runtime used to build the game

• Rational Team Concert was used as the team development
environment. Jazz Hub was used to open stories, defects and
other work items and have them picked up and worked on by
developers (and seen to be worked on) as well as having the code
submitted with associations to the related work items made it easy
to track how development was progressing.

• WebSphere Application Server tools for Eclipse was used to
develop the web application and deploy to the WAS Liberty server.

• WAS Liberty Profile is the light weight application server used to
allow quick, iterative development and deployment of the Code
Rally application. The WAS Liberty profile server is also used to
host Code Rally to handle all of the incoming and outgoing
requests for running the game.

