
IBM Java 8:
What's coming next?

Ian Partridge
Java Technology Center, UK
i.partridge@uk.ibm.com

© 2013 International Business Machines Corporation 2

Disclaimer

• © Copyright IBM Corporation 2013. All rights reserved.

• U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR
INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE
COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE.
IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR
OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS
SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY
AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR SOFTWARE.

© 2013 International Business Machines Corporation 3

Agenda

• History

• Java 8
– What's out
– What's in
– The future

• IBM Java 8 beta program
– How to join
– Changes so far
– New features

© 2013 International Business Machines Corporation 4

History

• J2SE 1.4 2002
– Regular expressions, JAXP (XML and XSLT), Web Start

• J2SE 5.0 2004
– Generics, autoboxing, varargs, for-each loop

• Java SE 6 2006
– Pluggable annotations, Swing UI remodel, JVMTI and JPDA enhancements, JAXB, JAX-WS

• Java SE 7 2011
– Project Coin, fork/join framework, NIO2, invokedynamic

• Java SE 8 2013
– ???

© 2013 International Business Machines Corporation 5

What's NOT included

Project Jigsaw

Complex effort to:

1) Introduce a module system into Java
– Fix “JAR hell”
– Retire the classpath
– Evolve classloaders

2) Modularise the Java Platform itself
– API and implementation dependencies

All while maintaining compatibility with existing code, JARs, OSGi,
maven etc.

© 2013 International Business Machines Corporation 6

Project Jigsaw

Mark Reinhold (Oracle) proposed deferring to Java SE 9 last year
– http://mreinhold.org/blog/late-for-the-train-qa
– Strong majority of EG agreed

• “Project Jigsaw started at Sun, way back in August 2008. Like many
efforts during the final years of Sun, it was not well staffed. Jigsaw initially
ran on a shoestring, with just a handful of mostly part-time engineers, so
progress was slow. During the integration of Sun into Oracle all work on
Jigsaw was halted for a time, but it was eventually resumed after a
thorough consideration of the alternatives. Project Jigsaw was really only
fully staffed about a year ago” - Mark Reinhold, August 2012

• “I therefore propose to defer the addition of a module system and the
modularization of the Platform to Java SE 9. This is by no means a
pleasant choice, but I think it's preferable to delaying Java SE 8 until the
modularity work is complete.” - Mark Reinhold, September 2012

http://mreinhold.org/blog/late-for-the-train-qa

© 2013 International Business Machines Corporation 7

What IS included?

JSR 337 defines the Java SE 8 platform – umbrella JSR

• JSR 308 – Annotations on Java Types
• JSR 310 – Date and Time API
• JSR 335 – Lambda Expressions for the Java Language
• Misc. JSRs

– Updates to concurrency APIs, new Base64 APIs, Javadoc APIs

• Other maintenance JSRs
– Unicode, JDBC, JAXP, JAXB, JAX-WS

• http://openjdk.java.net/projects/jdk8/features has a good list

• Let's look at those 3 main JSRs...

http://openjdk.java.net/projects/jdk8/features

© 2013 International Business Machines Corporation 8

Project Lambda

Adding lambda expressions to Java

• Goal: evolve Java language to support functional-style “code as
data” programming models

• Goal: enable parallel multi-core efficient libraries (leveraging
fork/join from Java 7)

• Goal: keep the Java language relevant

© 2013 International Business Machines Corporation 9

Iteration – today

for (Account a : accounts) {
if (a.currentBalance() < 0) {

a.debit(20); // profit!
}

}

Is syntactic sugar for...

Iterator i = accounts.iterator();
while (i.hasNext()) {

Account a = i.next();
if (a.currentBalance() < 0) {

a.debit(20); // profit!
}

}

© 2013 International Business Machines Corporation 10

Iteration – today

• Problem:

• Inherently sequential
– Fixed iteration from beginning to end
– Logic is fixed

• What do we really want?
– Make the classlibraries deal with iteration
– Pass a collection, and the operation to perform
– Get the result back

• The operation to perform
– How do you pass an “operation to perform” in Java?

for (Account a : accounts) {
 if (a.currentBalance() < 0) {
 a.debit(20); // profit!
 }
}

© 2013 International Business Machines Corporation 11

Anonymous inner classes

public interface Invoker<T> {
void invoke(T t);

}

accounts.forEach(new Invoker<Account>() {
public void invoke(Account a) {

if (a.currentBalance < 0) {
a.debit(20);

}
}

});

Collections.forEach() implemented by the classlibraries
- could use Iterators, or something else

© 2013 International Business Machines Corporation 12

Lambdas in Java

• Language designers decided to build on anonymous inner
classes to implement lambdas

• Design principle: pave the cowpaths

• Interfaces which only define one method are given a special
name:

– Functional Interfaces (aka SAM-types (Single Abstract Methods))

• Programmer does not need to declare their interface as
“functional”, it is inferred by the compiler

© 2013 International Business Machines Corporation 13

Functional Interfaces in Java 7

• Java 7 already contains plenty of these interfaces:

java.lang.Runnable
java.util.concurrent.Callable
java.security.PrivilegedAction
java.util.Comparator
java.io.FileFilter
java.nio.file.PathMatcher
java.lang.reflect.InvocationHandler
java.beans.PropertyChangeListener
java.awt.event.ActionListener
javax.swing.event.ChangeListener

© 2013 International Business Machines Corporation 14

Lambda expressions

• Lambda expressions are a new language feature which replace
the bulkiness of anonymous inner classes with a more elegant
approach

• Examples:

(int x) -> x*x

() -> System.out.println(“Hello world”);

(String s) -> System.out.println(“Hello ” + s);

© 2013 International Business Machines Corporation 15

Converting our example

for (Account a : accounts) {
if (a.currentBalance() < 0) {

a.debit(20); // profit!
}

}

Becomes...

accounts.stream().forEach(
(Account a) -> { if (a.currentBalance < 0) a.debit(20); }

);

© 2013 International Business Machines Corporation 16

We can do better

accounts.stream().forEach(
(Account a) -> { if (a.currentBalance < 0) a.debit(20); }

);

Could be...

accounts.stream().forEach(
a -> { if (a.currentBalance < 0) a.debit(20); }

);

Thanks to a clever compiler.

Can it be clearer though?

© 2013 International Business Machines Corporation 17

Filtering and mapping

accounts.stream()
.filter(a -> a.currentBalance < 0)
.forEach(a -> { a.debit(20); });

List<Account> l = accounts.stream()
 .filter(a -> a.surname() == "Branson")
 .filter(a -> a.currentBalance > 1000000)
 .into(new ArrayList<Account>());

int sum = accounts.stream()
 .map(a -> a.currentBalance())
 .sum();

© 2013 International Business Machines Corporation 18

Laziness

Filter and map operations can be eager or lazy

• Eager – filtering is complete when filter() returns
• Lazy – filtering is only done on-demand

• Stream operations which produce new streams lend themselves to lazy
implementations

– For example:

accounts.stream().filter(a -> a.surname == "Smith").findFirst();

• Operations like accumulation, or which save results to a new Collection are
naturally eager

– For example:

int sum = accounts.stream().map(a -> a.currentBalance()).sum();

© 2013 International Business Machines Corporation 19

Streams

package java.util.stream
public interface Stream<T>

• A sequence of elements supporting sequential and parallel bulk
operations. Streams support lazy transformative operations
(transforming a stream to another stream) such as filter and map,
and consuming operations, such as forEach, findFirst, and
iterator. Once an operation has been performed on a stream, it is
considered consumed and no longer usable for other operations.

• Streams are not data structures; they do not manage the storage
for their elements, nor do they support access to individual
elements. However, you can use the iterator() or spliterator()
operations to perform a controlled traversal.

© 2013 International Business Machines Corporation 20

What can Streams do?

Method Description

allMatch Return true if all elements of the stream match the predicate

anyMatch Return true if any element of the stream matches the predicate

filter Return a stream containing the subset of the elements matching the predicate

findFirst Return the first element matching the predicate

flatMap Return a stream where each element is transforming into 0 or more values

forEach Perform an operation on each element (usually destructively)

limit Return a stream containing no more than maxSize elements

map Transform the stream into another, applying the given function to each element

max/min Return the max/min element based on the supplied Comparator

reduce Reduce the stream to a single value, performing the Reducer operation on each
element

sorted Sort the stream based on natural order or supplied Comparator

toArray Convert stream to array

© 2013 International Business Machines Corporation 21

Evolving the Java Collections Framework

• If Java had lambdas from day 1, the Collections API would look
very different

• How can the Collections take advantage of lambda expressions?

• Could start again – Collections II !
– Major task
– Developers would hate it

• Instead, Java 8 evolves existing interfaces like Collection,
Map and Iterable

© 2013 International Business Machines Corporation 22

Evolving Interfaces

Evolving interfaces today is very difficult

• Say you have:

public interface MyInterface {
void someMethod();

}

• and want to add...

public interface MyInterface {
void someMethod();
void anotherMethod();

}

Upgrading existing code works fine until you recompile the implementors!

© 2013 International Business Machines Corporation 23

Default methods

• Default methods are another new language feature – designed
to allow interfaces to evolve

– Most importantly, evolving the existing Collections classes

• They allow developers to add default behaviour to an interface

public interface MyInterface {
void someMethod();

default void anotherMethod() {

System.out.println("Another method");
}

}

• Existing implementers who do not implement anotherMethod() will use
the default implementation

• New implementors can override anotherMethod() if they want

© 2013 International Business Machines Corporation 24

Default methods

• This is a big change to the inheritance model of Java

• Interfaces have never contained implementations before

• It's not multiple inheritance though:
– Java already has multiple inheritance of types (you can implement

multiple interfaces in the same class)
– Default methods add multiple inheritance of behaviour
– It does not add multiple inheritance of state (like C++ has)

• You cannot add variables to interfaces

© 2013 International Business Machines Corporation 25

Method resolution

• What does this print?

Answer: "Interface B"

public interface A {
default void run() { System.out.println("Interface A"); }

}

public interface B extends A {
default void run() { System.out.println("Interface B"); }

}

public class C implements A, B {
public static void main(String[] args) {

new C().run();
}

}

© 2013 International Business Machines Corporation 26

Method resolution

Here are the rules:

• Classes always win. A declaration in the class or superclass beats any default method in an
interface

• Otherwise, the most specific default-providing interface is chosen.
– In the example before, this is B

Conflicts can still occur:

public interface A {
 default void run() { System.out.println("Interface A"); }
}

public interface B {
 default void run() { System.out.println("Interface B"); }
}

public class C implements A, B {
 public static void main(String[] args) {
 new C().run();
 }
}

© 2013 International Business Machines Corporation 27

Method resolution

Here's the javac error message:

class C inherits unrelated defaults for run() from types A
and B
reference to run is ambiguous, both method run() in A and
method run() in B match.

Wow, that's actually quite helpful!

Note that all this method resolution occurs at compile time

© 2013 International Business Machines Corporation 28

New Date and Time API – JSR 310

Current APIs have been around since forever

• System.currentTimeMillis()
– Time in milliseconds from 1 January 1970

• java.util.Date
– Most methods are now deprecated

• java.util.GregorianCalendar
– Handles time offsets like “one week earlier”

• Working with these classes is difficult
– They are widely disliked

© 2013 International Business Machines Corporation 29

Joda time

• Provides a quality replacement for the JDK date and time classes
– http://joda-time.sourceforge.net/

• Easy API
– It has getYear() instead of Calendar.get(Calendar.YEAR)!

• Supports multiple calendar systems out of the box
• Interoperates with JDK classes

– System.currentTimeMillis()
• More predictable performance

– System classes recalculate fields unexpectedly
• Open Source (ASL 2.0)

http://joda-time.sourceforge.net/

© 2013 International Business Machines Corporation 30

Designing the new Date/Time API

• As a long-running project, Joda time has encountered and found
solutions for many subtle date/time issues

• Joda time is the inspiration for the new Java date/time classes
– Same developers are involved in Joda time and JSR 310

• Fixes some architectural issues in Joda time as well

• New project is open source as well
– http://threeten.sourceforge.net/
– https://github.com/ThreeTen/threeten

• Javadoc is extensive
– http://download.java.net/jdk8/docs/api/java/time/package-summary.html

http://threeten.sourceforge.net/
https://github.com/ThreeTen/threeten
http://download.java.net/jdk8/docs/api/java/time/package-summary.html

© 2013 International Business Machines Corporation 31

Understanding the new API

• The new API is defined in the java.time package
• Most usecases are solved by these classes:

Instant
– A numeric timestamp, stored with nanosecond resolution. Useful for capturing a point in time, similar to

System.currentTimeMillis(). Instant is the closest equivalent class to java.util.Date. The instant when printed
looks like '2000-12-01T12:30:00.000Z'.

LocalDate
– A date without a time, offset or time zone. Useful for storing a birthday for example. The date when printed

looks like '2000-12-01'

LocalTime
– A time without a date, offset or time zone. Useful for storing store hours for example. The time when printed

looks like '12:30:00.000'

LocalDateTime
– A date and time without the offset or time zone. The date and time when printed looks like '2000-12-

01T12:30:00.000'

ZonedDateTime
– A date and time with offset and time zone. Useful for performing calculations that takes into account the

time zone like 'America/New_York'. ZonedDateTime is the closest equivalent class to
java.util.GregorianCalendar. The date and time when printed looks like '2000-12-01T12:30:00.000-
05:00[America/New_York]'

© 2013 International Business Machines Corporation 32

Type Annotations – JSR 308

• Extends the annotations available in Java 7 from just
declarations to any use of a type

• Before:

@Deprecated
public class OldClass {

...
@Override
String toString() { ... }

}

© 2013 International Business Machines Corporation 33

Type Annotations

Java 8 permits annotating any use of a type:

@Untainted String trustedString;

List<@NonNull String> strList;

myGraph = (@Immutable Graph) tmpGraph;

class UnmodifiableList<T> implements
@Readonly List<@Readonly T> {}

© 2013 International Business Machines Corporation 34

Type Annotations

• Programmers can use type annotations to write better, more self-
documenting code

• Compile-time tools can detect and prevent more errors
– Null pointer errors
– Unexpected side effects
– Incorrect equality checks

• The Checker Framework is an open source tool which
implements many error detectors

– http://types.cs.washington.edu/checker-framework/

• Some of these checkers will be included in the Java 8 javac

http://types.cs.washington.edu/checker-framework/

© 2013 International Business Machines Corporation 35

Example

A simple null pointer bug

public class GetStarted {
 void sample() {
 @NonNull Object ref = new Object();
 }
}

Compile with:

javac -processor NullnessChecker GetStarted.java

Now modify this line:

@NonNull Object ref = null;

to get a helpful compilation error

© 2013 International Business Machines Corporation 36

The Future?

No-one really knows (even Oracle), but...

• Java SE 9 and 10
– Project Jigsaw!
– Multi-tenancy?
– Better multi-language support?
– Hypervisor-awareness?
– Full 64-bit addressability??
– Self-tuning JVMs???
– Removing primitive types???

• “Java is not the new Cobol” - Oracle

© 2013 International Business Machines Corporation 37

IBM Java 8 beta program

• Getting early feedback from IBM customers and business
partners about IBM Java 8

Beta 1 Beta 2 Beta 3

FebruaryDecember April

End

August

© 2013 International Business Machines Corporation 38

Objectives

• IBM
– Obtain feedback on the new features in the upcoming release
– Use feedback to influence our development effort

• Customers
– Early product knowledge and experience
– Opportunity to shape future directions

• Win – win

© 2013 International Business Machines Corporation 39

Deliverables

• IBM is providing:
– Beta code for you to download and install
– Draft documentation
– Support via a developerWorks Community on a best-effort basis

• Supported platforms:
– AIX

• 32-bit IBM POWER
• 64-bit IBM POWER

– Linux
• 31-bit IBM System z
• 64-bit IBM System z
• 32-bit IBM POWER
• 64-bit IBM POWER
• 32-bit x86
• 64-bit AMD64/EM64T

– z/OS
• 31-bit IBM System z
• 64-bit IBM System z

© 2013 International Business Machines Corporation 40

How to join

https://ibm.biz/BdxPpH

© 2013 International Business Machines Corporation 41

Development process

• Oracle is developing Java 8 concurrently with IBM
– http://openjdk.java.net/projects/jdk8/

• Oracle's plan targets GA in September
– IBM's GA will follow as soon as possible

• IBM betas are not necessarily based directly upon Oracle
milestone builds

– For example, our Beta 1 corresponds to a level between Oracle M4 and M5
– Plus additional changes!

http://openjdk.java.net/projects/jdk8/

© 2013 International Business Machines Corporation 42

Current limitations

• Java plugin, Applet view and WebStart
– These are current unavailable

• Security limitations
– Kerberos
– hwkeytool on z/OS
– IBMPKCS11Impl provider

• Java Communications API
– Not currently available

• Uninstallation leaves some files behind on Linux

• Documentation LaunchPad utility
– Not yet updated for Java 8

© 2013 International Business Machines Corporation 43

IBM changes

Removal of legacy and deprecated functionality

• JRIO on z/OS
– Use JZOS record I/O instead

• Annotation Processing Tool (apt) and com.sun APIs
– Use Pluggable Annotation Processing API instead (available since Java 6)

© 2013 International Business Machines Corporation 44

IBM serviceability enhancements

• Enhancements to JVM dump API

• Specify dump filename at runtime:
com/ibm/jvm/Dump.javaDumpToFile(fileName)
com/ibm/jvm/Dump.heapDumpToFile(fileName)
com/ibm/jvm/Dump.systemDumpToFile(fileName)
com/ibm/jvm/Dump.snapDumpToFile(fileName)

• Setting and querying of dump options at runtime:
com/ibm/jvm/Dump.setDumpOptions(options)
com/ibm/jvm/Dump.queryDumpOptions()
com/ibm/jvm/Dump.resetDumpOptions()
com/ibm/jvm/Dump.triggerDump(options)

© 2013 International Business Machines Corporation 45

IBM serviceability enhancements

New information available in javacore.txt files

• Hypervisor information:

2CISYSINFO Hypervisor name = PowerVM

• Supported hypervisors:
– KVM
– VMWare
– PowerVM
– Hyper-V
– z/VM
– PR/SM

© 2013 International Business Machines Corporation 46

IBM serviceability enhancements

• Include PID information in the body of javacore.txt files
– Previously only available in filename, but that was easily lost via renaming or custom -Xdump

settings

0SECTION ENVINFO subcomponent dump routine
NULL =================================
1CIJAVAVERSION JRE 1.8.0 Linux amd64-64 build
nonproduction_20121211_131477 (pxa6480-20121205_01)
...
1CIRUNNINGAS Running as a standalone JVM
1CIPROCESSID Process ID: 5306 (0x14BA)
1CICMDLINE
/java/ras/vm/jvmxa6480_ibuild_131477/jre/bin/java
-Xdump:java:events=vmstop -version

© 2013 International Business Machines Corporation 47

	Presentation Title: Title Line Two
	Slide 2
	Heading
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

