
IBM Java 7 and WAS v8.5:
Features and benefits

Michael Tunnicliffe
Software Engineer

© 2013 International Business Machines Corporation 2

Please note

IBM's statements regarding its plans, directions, and intent are subject to change or
withdrawal at IBM's sole discretion.

Information regarding potential future products is intended to outline our general product
direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information about
potential future products may not be incorporated into any contract. The development,
release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM benchmarks
in a controlled environment. The actual throughput or performance that any user will
experience will vary depending upon many factors, including considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

© 2013 International Business Machines Corporation 3

A little bit about me

Michael Tunnicliffe is a Software Engineer with IBM at the
Hursley Labs near Winchester, UK.

He currently works in the Java Support Team and has over 10
years experience in roles related to development and support of
the IBM JDK.

He is responsible for supporting IBM Java 5.0+, dealing both with
difficult to diagnose problems and issues in the use of the JDK by
IBM products, 3rd parties and applications.

This has led to significant exposure to varying versions of
WebSphere Application Server in the context of solving client
problems.

© 2013 International Business Machines Corporation 4

A little bit about you

© 2013 International Business Machines Corporation 5

What I'm going to talk about

A little bit about me

A little bit about you

What I'm going to talk about

Java 7: What is it? What's new? Base features. IBM features.

WAS 8.5: Java 7 in WAS. “Java version switch” feature. Migration toolkit.

Questions

Finish early and have some lunch!

© 2013 International Business Machines Corporation 6

What I'm going to talk about

A little bit about me

A little bit about you

What I'm going to talk about

Java 7: What is it? What's new? Base features. IBM features.

WAS 8.5: Java 7 in WAS. “Java version switch” feature. Migration toolkit.

Questions

Finish early and have some lunch!

You are here

© 2013 International Business Machines Corporation 7

Java 7: What is it?

Major platform release, touching on all aspects of the language
and JVM. Incorporating the following themes:

• Compatibility
– “Any program running on a previous release of the platform must also run

 unchanged on an implementation of Java SE 7”

• Productivity
– “...promote best coding practices and reduce boilerplate... minimal learning curve...”

• Performance
– “...new concurrency APIs... enable I/O-intensive applications by introducing a true

 asynchronous I/O API..”

• Universality
– “...accelerate the performance of dynamic languages on the Java Virtual Machine.”

• Integration
– “Java SE 7 will include a new, flexible filesystem API as part of JSR 203...”

© 2013 International Business Machines Corporation 8

Java 7: What's new?

Base features

Some larger features

• JSR 334 – Small language enhancements (Project Coin)

• JSR 203 – More new I/O APIs for the Java platform (NIO.2)

• JSR 292 – New invokedynamic bytecode

• JSR 166y – Concurrency and collections updates

Plus some smaller features (TLS 1.2, UNICODE 6.0…)

© 2013 International Business Machines Corporation 9

Java 7: Small language enhancements (Project Coin)

Goal: Improve programmer productivity with small enhancements
 to the Java language and class libraries

• Strings in switch statements
switch (myString) {

case “one”: /* do something */ break;
case “red”: /* do something else */ break;
default: /* do something generic*/;

}

• Improved type inference for generic instance creation (diamond)
Map<String, MyType> foo = new HashMap<String, MyType>();

becomes:

Map<String, MyType> foo = new HashMap<>();

© 2013 International Business Machines Corporation 10

Java 7: Small language enhancements (Project Coin)

• Better support for literals
– binary literals for integral types (byte, short, int and long):

0b10011010
– underscores in numeric literals to help visual blocking :

34_409_066 36.100_23f (only between digits though)

• Simplified varargs method invocation
– Moves warnings to method declaration rather than on each use.

Reduces unavoidable warnings.

© 2013 International Business Machines Corporation 11

Java 7: Small language enhancements (Project Coin)

• Handle multiple exception types in a single catch
try {

…
} catch (ParseException a) {

handle(a);
} catch (NumberFormatException b) {

handle(b);
}

becomes:

try {
…

} catch (ParseException|NumberFormatException a) {
handle(a);

}

In this new construct a will act as if declared final with type Throwable
None of the exception classes used may be a subclass of any of the others

© 2013 International Business Machines Corporation 12

Java 7: Small language enhancements (Project Coin)

● Automatic resource management
– Dealing with all possible failures is hard
– Closing resources is hard

 Idea: Get the compiler to help

– Define an interface on resources that knows how to tidy up automatically
• The new interface is called AutoCloseable
• Relevant Java SE classes have been retro-fitted with this interface

– Add new syntax to make using this interface convenient
• The new syntax is referred to as try-with-resources

© 2013 International Business Machines Corporation 13

Java 7: Small language enhancements (Project Coin)

● Automatic resource management

meaning, this:
public void processFiles() throws IOException {
 InputStream in = null;
 OutputStream out = null;
 try {
 in = new FileInputStream(aFilename);
 out = new FileOutputStream(bFilename);
 …
 } finally {
 if (in != null) {
 try { in.close(); } catch (IOException e) { … }
 }
 if (out != null) {
 try { out.close(); } catch (IOException e) { … }
 }
 }
}

© 2013 International Business Machines Corporation 14

Java 7: Small language enhancements (Project Coin)

● Automatic resource management

becomes:
public void processFiles() throws IOException {
 try (InputStream in = new FileInputStream(aFilename);
 OutputStream out = new FileOutputStream(bFilename)) {
 …
 }
}

© 2013 International Business Machines Corporation 15

Java 7: More new I/O APIs for the Java platform (NIO.2)

Goal: Enable Java programmers to unlock the more powerful
 I/O abstractions

• Asynchronous I/O
– Enable significant control over how I/O operations are handled enabling

better scaling

– Socket & file classes available

– 2 approaches to completion notification
• java.util.concurrent.Future
• java.nio.channels.CompletionHandler

– Flexible thread pooling strategies, including custom ones

© 2013 International Business Machines Corporation 16

Java 7: More new I/O APIs for the Java platform (NIO.2)

• New file system API
– Address long-standing usability issues and boilerplate

• Modeling of more file system concepts like symlinks
• File attributes modeled to represent FS-specific attributes (eg owner,

permissions, …)
• java.nio.file.DirectoryStream iterates through directory entries

– Scales very well, using less resources
– Allows glob, regex or custom filtering

• java.nio.file.Path is a new representation of a file location

– Model entirely artificial file systems with FileSystem providers

– File Change Notification
• Improves performance of apps that currently poll to observe changes

– All tied together with conveniences in the java.nio.file.Files class

© 2013 International Business Machines Corporation 17

Java 7: More new I/O APIs for the Java platform (NIO.2)

● Example: Directory visit
Files.walkFileTree(myPath, new SimpleFileVisitor<Path>() {
 public FileVisitResult visitFile(Path file,
 BasicFileAttributes attrs) {
 try {
 // do some processing of file
 …
 } catch (IOException e) {
 // failed, do error handling
 }
 return FileVisitResult.CONTINUE;
 }
});

© 2013 International Business Machines Corporation 18

Java 7: Concurrency and collection updates

Goal: Provide Java programmers with more powerful tools to
 take advantage of the prevalence of multicore

• Major new abstraction: Fork/Join framework
– Very good at 'divide and conquer' problems
– Specific model for parallel computation acceleration
– Implements ExecutorService
– Implements work stealing for lopsided work breakdowns

• Hence more efficient than normal Thread/Executor -based solutions

• Other enhancements
– TransferQueue: model producer/consumer queues efficiently (similar to BlockingQueue)
– Phaser: very flexible synchronization barrier (similar to CyclicBarrier)

© 2013 International Business Machines Corporation 19

Java 7: New invokedynamic bytecode

Goal: Enable dynamic languages to run more efficiently on the JVM

The JVM is now home to many languages, but it lacks some fundamentals that
help make those languages go fast.

• Decouple method lookup from method dispatch
– Get away from being purely Java language centric

• Approach
– Add a new bytecode to directly execute a method
– Allow this to be updated at run time:

• Change which method is executed
• Provide a framework for mutators (add/remove parameters, etc)

– Ensure the JIT-compiler can continue to generate efficient compiled code

© 2013 International Business Machines Corporation 20

Java 7: Smaller features

• ClassLoader changes
– Enabled parallel classloading capability via new “safe” API
– URLClassLoader gains a close() method

• I18N
– Unicode 6.0, Locale enhancement, Separate user locale and user-interface locale

• TLS 1.2 – Security updates

• JDBC 4.1 – ARM awareness

• Client (UI) updates
– Create new platform APIs for 6u10 graphics features
– Nimbus look-and-feel for Swing
– Swing Jlayer component
– XRender support

• Update the XML stack

© 2013 International Business Machines Corporation 21

Java 7: What's new?

IBM features

• Performance & platform exploitation – z196, POWER 7, …

• Garbage Collector updates
– General improvements
– New balanced GC policy

• Technology evaluation of WebSphere Real Time

• Serviceability and consumability improvements

© 2013 International Business Machines Corporation 22

Java 7: Performance & platform exploitation

• “4 out of 5 publishers prefer J9”
– http://www.spec.org/jbb2005/results/res2010q4
– 88% SPECjbb2005 publishes in 2010 with J9

• 94 with J9, 9 with HotSpot, 5 with Jrockit

• POWER7 exploitation
– New prefetching capabilities
– Extended divide instructions
– Conversion between integer and float
– Bit permutation and popcount instructions
– BCD assist exploited through Java BigDecimal

• System zEnterprise 196 exploitation
– 70+ new instructions

• High-word facility
• Interlock-update facility
• Non-destructive operands
• Conditional load/store

– 93% aggregate improvement
• Some from J9 v26 JVM, majority from hardware

P7 1.6X faster than Nehalem EX
(8 sockets)

3321826

5210501

0
1000000
2000000
3000000
4000000
5000000
6000000

Nehalem EX POWER7

z/OS CPU Intensive Java
Workload

0

50

100

150

z10 J6 SR9

z196 J6 SR9
z196 J6 R2.6

http://www.spec.org/jbb2005/results/res2010q4
http://www.spec.org/jbb2005/results/res2010q4
http://www.spec.org/jbb2005/results/res2010q4

© 2013 International Business Machines Corporation 23

Java 7: General GC improvements

• Default GC policy changed to gencon
– Generational and concurrent collection algorithm provides best out of the

box performance for most applications

• Object header size reduction
– Object headers are 4-16 bytes depending on object type and reference size
– Reduces GC frequency and provides better object locality

• Scalability improvements across all policies
– GC pauses reduced on large n-way machines (#CPU > 64)
– Highly parallel applications benefit from improved allocation scalability

• As a result subpool GC policy now an alias for optthruput

• New format verbose:gc logs
– Event-based instead of summary-based
– Provides more detailed information for deeper analysis

© 2013 International Business Machines Corporation 24

Java 7: New GC policy added: balanced

Address next generation hardware challenges

• Meet need for scaling to large heaps
– Existing policies exhibit

• a mixture of frequent short pauses and long pauses
• pause times that increase with heap size

• Provide strong adaptive performance without expert advice
– Flexibility and adaptive behaviour to provide a good first impression
– Every tuning option increases complexity by an order of magnitude
– Showcase hardware capabilities through exploitation of platform facilities

• Maintain and increase competitive edge through innovation
– Address new developments in industry quickly

Heap Size

P
a

us
e

T
im

e cu
rre

nt

desired

Time

P
a

us
e

T
im

e

current

desired

© 2013 International Business Machines Corporation 25

Java 7: New GC policy added: balanced

• Incrementally collect areas of the heap that meet our needs
– Partial Garbage Collect (PGC)

• Reduced pause times
• Free up memory

• Heap “collection set” selection based on best ROI
– Highest potential to free memory

• Recently allocated objects
• Areas that would reduce fragmentation

Heap

Newly Allocated Newly AllocatedFragmented

Heap areas selected for GC
“Collection Set”

– Various technologies applied
• Copy Forward (default)

– High level of object mobility (similar to gencon)
• Mark / Sweep / Compact

– Separates notion of “collection” vs. “compaction”

© 2013 International Business Machines Corporation 26

Java 7: New GC policy added: balanced

• Suggested deployment scenarios
– Large heaps (>4GB in size)
– Frequent global collections
– Excessive time spent in global compaction
– Relatively frequent allocation of large arrays (>1MB in size)

• Fully supported on all IBM JDK 7 64-bit platforms
– First class citizen with other GC policies

© 2013 International Business Machines Corporation 27

Java 7: Technology evaluation of WebSphere Real Time

• WebSphere Real Time is a Java Runtime built with J9
technology that provides consistent performance

– Incremental GC means consistently short (3ms) GC pause times
– JIT compilations cannot block application threads
– Also a Hard Real Time flavor that runs on Real-Time Linux® (e.g. RHEL

MRG, Novell SLERT)

• IBM Java 7 includes an evaluation version of WRT-V3
– New pause time target option lets you configure GC pause times
– Throughput performance improvements
– 32- and 64-bit Linux on x86, 32- and 64-bit AIX® on POWER®

• Just add -Xgcpolicy:metronome to your Java 7 command
line to try it out!

© 2013 International Business Machines Corporation 28

Java 7: Technology evaluation of WebSphere Real Time

~5ms ~8ms

10ms – 14 ms

70ms

Gencon pause times

2.8ms - 3.2ms

Metronome Pause Times (Target=3ms)

Metronome Pause Times (Target=6ms)

Metronome Pause Times (Target=10ms)

5.8ms - 6.2ms

9.8ms - 10.2ms

● Most GC policies have pause times
ranging upwards of 10 – 100 ms

● Metronome controls pause times to
as short as 3ms

● Throughput impact, varies by
application

GC pauses: gencon and metronome

© 2013 International Business Machines Corporation 29

Java 7: Serviceability and consumability improvements

• Dump agents (-Xdump)
– Native stack traces in javacore
– Environment variables and ULIMITs in javacore
– Native memory usage counters in javacore and from core dumps via DTFJ
– Multi-part TDUMPs on z/OS® 64 bit systems

• Trace engine (-Xtrace)
– Tracepoints can include Java stacks (jstacktrace)

• Message logging (-Xlog)
– Messages go to the Event log on Windows, syslog on Linux, errlog or

syslog on AIX, MVS console on z/OS

© 2013 International Business Machines Corporation 30

Java 7: Serviceability and consumability improvements
Native memory usage counters

NATIVEMEMINFO subcomponent dump routine
=======================================

JRE: 555,698,264 bytes / 1208 allocations
|
+--VM: 552,977,664 bytes / 856 allocations
| |
| +--Classes: 1,949,664 bytes / 92 allocations
| |
| +--Memory Manager (GC): 547,705,848 bytes / 146 allocations
| | |
| | +--Java Heap: 536,875,008 bytes / 1 allocation
| | |
| | +--Other: 10,830,840 bytes / 145 allocations
| |
| +--Threads: 2,660,804 bytes / 104 allocations
| | |
| | +--Java Stack: 64,944 bytes / 9 allocations
| | |
| | +--Native Stack: 2,523,136 bytes / 11 allocations
| | |
| | +--Other: 72,724 bytes / 84 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations
| |

© 2013 International Business Machines Corporation 31

Wait, where did we get to?

A little bit about me

A little bit about you

What I'm going to talk about

Java 7: What is it? What's new? Base features. IBM features.

WAS 8.5: Java 7 in WAS. “Java version switch” feature. Migration toolkit.

Questions

Finish early and have some lunch!
Congratulations, you
made it this far!

© 2013 International Business Machines Corporation 32

WAS 8.5: Java 7 in WAS

• Goals
– Enable developers to use Java 7 features immediately without forcing

global migrations

– Decouple Java SE version from WAS version
• Potentially decrease server migration costs
• Allow customer flexibility in technology choices
• Acknowledge future Java versions might be added to existing product

versions

– Standardize Java SE version switching across platforms
• WAS for z/OS and iOS already supported some mixing
• Facilitate management of future Java versions

– Enable specific & targeted migrations

© 2013 International Business Machines Corporation 33

WAS 8.5: Java 7 in WAS

• Caveat: does not support “bring your own” Java SE
 implementation

• Suggested implementation pattern:
1. Install WAS
2. Install Java 7 optional package
3. Use 'managesdk' to set all defaults to Java 7
4. Create a profile

• Alternative pattern options
– Add a single Java 7 node
– Add Java 7 to specific servers in a node, migrate only some apps
– Move profile by profile

© 2013 International Business Machines Corporation 34

WAS 8.5: “Java version switch” feature

• “managesdk” controls what JVMs are used in WAS.
– Enumerates JVMs available in the product
– Associates and configures JVMs for profiles, including future

defaults for new profiles
– Found in the app_server_root/bin/ directory

..\AppServer\bin> managesdk -listAvailable
CWSDK1003I: Available SDKs :
CWSDK1005I: SDK name: 1.6_64
CWSDK1005I: SDK name: 1.7_64
CWSDK1001I: Successfully performed the requested
 managesdk task.
..\AppServer\bin>

© 2013 International Business Machines Corporation 35

WAS 8.5: “Java version switch” feature

• Enabling the Java 7 SDK
– Set new profile default

..\AppServer\bin> managesdk -setnewprofiledefault -sdkname 1.7_64
CWSDK1022I: New profile creation will now use SDK name 1.7_64.
CWSDK1001I: Successfully performed the requested managesdk task.

– Enable sdk in all profiles
…\AppServer\bin> managesdk -enableprofileall -sdkname 1.7_64
CWSDK1001I: Successfully performed the requested managesdk task.

• Potential problems
– Between JVMs, ensure the consistency of:

• Command line options
• Properties files
• User-added extension and endorsed jars
• JNI DLLs
• Monitoring (eg: ITCAM)

© 2013 International Business Machines Corporation 36

WAS 8.5: Java version compatibility

“Write Once, Run Anywhere” - what does this mean?

• Java commits to binary compatibility, not source compatibility
– Existing binaries (ie: class files) continue to work on newer Java versions
– But: existing Java source may not compile

• Backwards compatible, but not forward compatible
– Build .java on old, run on new => works
– Build .java on new, run on old => fails

© 2013 International Business Machines Corporation 37

WAS 8.5: Java version compatibility

Example source compatibility problem

public class F {
 public static int enum = 5;
}

> javac -source 1.4 -target 1.4 F.java
F.java:2: warning: as of release 5, 'enum' is a keyword, and
may not be used as an identifier
1 warning

> javac -source 1.5 -target 1.5 F.java
F.java:2: as of release 5, 'enum' is a keyword, and may not
be used as an identifier
(use -source 1.4 or lower to use 'enum' as an identifier)
1 error

© 2013 International Business Machines Corporation 38

WAS 8.5: Java version compatibility

• What kinds of change should we watch for?
– Language syntax
– API enhancements
– Unspecified behaviour changes
– Unspecified class changes
– Bugs (fixed and introduced)

• Ensure 3rd party libraries work on Java 7
– Almost all will due to backwards compatibility, but a small minority may have some

have very specific issues. (e.g.: version checking)
– Most bytecode instrumentation libraries need new versions

• ASM -> version 4.0
• BCEL -> TBD – under development

© 2013 International Business Machines Corporation 39

WAS 8.5: Caveats, Tricks and Tips

• To use a Java 7 runtime, you do NOT need to rebuild your code.

• How to remain Java 6 compatible?
– Warning: “-source 1.7 –target 1.6” does NOT work.
– Can use “-source 1.6 –target 1.6” but beware use of new classes / methods.
– Optional practice: compile against both JDK 6 & JDK 7 to be sure.

• Old trick of “build at new level, target old” does NOT work. ARM in particular
requires significant JVM plumbing to support.

© 2013 International Business Machines Corporation 40

WAS 8.5: Migration toolkit

• Migrate WebSphere applications from older releases to WebSphere
Application Server v7.0, v8.0 or v8.5

– Migrate applications from v5.1, v6.0, v6.1, v7.0 and v8.0

• Migrate From Oracle (WebLogic & OracleAS), JBoss or Tomcat to
WebSphere Faster/Easier

– Migrate applications 2x as fast
– Migrate web services 3x as fast

• The tool programmatically scans customer applications and identifies the
changes required.

– In many cases the tool is capable of making the application change itself, in other
cases it provides guidance on how to make the required change.

– Generate reports to assess the migration task.

• Ease the migration process and speed time to value with this Free toolkit

© 2013 International Business Machines Corporation 41

Summary

• Java 7 base features
– Base features

• JSR 334 – Small language enhancements (Project Coin)
• JSR 203 – More new I/O APIs for the Java platform (NIO.2)
• JSR 292 – New invokedynamic bytecode
• JSR 166y – Concurrency and collections updates
• Some smaller features (TLS 1.2, UNICODE 6.0…)

– IBM JDK features
• Performance & platform exploitation – z196, POWER 7, …
• Garbage Collector updates
• Technology evaluation of WebSphere Real Time
• Serviceability and consumability improvements

• WAS 8.5
– Java 7 in WAS
– “Java version switch” feature
– Java version compatibility
– Caveats, tips and tricks
– Migration toolkit

© 2013 International Business Machines Corporation 42

Questions?

© 2013 International Business Machines Corporation 43

References

• Java 7
– Project Coin

• https://www.ibm.com/developerworks/mydeveloperworks/blogs/javaee/entry/5_minute_gui
de_to_project_coin9?lang=en

– NIO.2
• http://www.ibm.com/developerworks/java/library/j-nio2-1/index.html

– Fork/Join
• http://www.ibm.com/developerworks/library/j-jtp11137/index.html

• WAS 8.5
– What's new

• http://www.ibm.com/developerworks/websphere/techjournal/1206_alcott/1206_alcott.html
– Using Java 7 in WAS 8.5

• http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.installation.base.doc/ae/tin
s_installation_jdk7.html

• http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae
/rxml_managesdk.html

– Migration Tools
• http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/index.html

https://www.ibm.com/developerworks/mydeveloperworks/blogs/javaee/entry/5_minute_guide_to_project_coin9?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/javaee/entry/5_minute_guide_to_project_coin9?lang=en
http://www.ibm.com/developerworks/java/library/j-nio2-1/index.html
http://www.ibm.com/developerworks/library/j-jtp11137/index.html
http://www.ibm.com/developerworks/websphere/techjournal/1206_alcott/1206_alcott.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.installation.base.doc/ae/tins_installation_jdk7.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.installation.base.doc/ae/tins_installation_jdk7.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_managesdk.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/rxml_managesdk.html
http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/index.html

© 2013 International Business Machines Corporation 44

Copyrights and Trademarks

© IBM Corporation 2012. All Rights Reserved

IBM, the IBM logo, ibm.com are trademarks or registered

trademarks of International Business Machines Corp.,

registered in many jurisdictions worldwide. Other product and

service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at

“Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml

	Presentation Title: Title Line Two
	Heading
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

