
Building Larger
Applications with IBM

Worklight
Andrew Ferrier

andrew.ferrier@uk.ibm.com

Saturday, 23 March 13

mailto:andrew.ferrier@uk.ibm.com
mailto:andrew.ferrier@uk.ibm.com

Agenda
• Recap - Web, Mobile, and Worklight

• Development Time

• Toolkits and Frameworks

• Structuring Code

• RESTful Services and Worklight Adapters

• Lifecycle - Library Systems, Builds / Testing /
Deployment

• Other Tips - Client-side, Server-side, and
Updating

Saturday, 23 March 13

Recap - How Has The
Web Changed?

Saturday, 23 March 13

Web 1.0 Model
l Static HTML content, little-

to-no-dynamicity
l Most folks know this already
l Server-side-driven content

l Perhaps with a small amount
of JavaScript for effects or
form validation

l Traditionally written with a
variety of technologies –
Servlets, JSPs, PHP, etc.

Saturday, 23 March 13

Web 2.0 Model
l Browser using AJAX/XHR

to communicate with
server

l Lightweight RESTful
Services (often using
JSON data)

l Service Gateway or other
technology to proxy all
service invocations

Saturday, 23 March 13

The Programming
Model

Saturday, 23 March 13

What does the mobile
landscape look like?

Mobile Browser Execution

Traditional Trade-offs
(w

ithout M
EA

P/M
A

P)
C

haracteristics

Maintenance Cost (TCO)

Portability (cross-device reuse)

Richness of Mobile Presentation / Services

Web
Application

Desktop and mobile using open
web (HTML, JavaScript) client

programming models

Limited to no device-specific
functionality

AppStore download and install

Native Mobile
Application

Mobile only, developed using

native languages or transcode to
native via MAP tools

Native appearance and

device capabilities, performance

Mobile Web
Application

Mobile only using open web
(HTML5, JavaScript) client

programming models

Off-line capabilities

Hybrid Mobile
Application

Mobile only, app runs on the

device, but leverages open web
(HTML5, JS) via JavaScript

bridge

Native device capabilities
(GPS, camera, contacts)
Mimic native appearance

Saturday, 23 March 13

What is Worklight?

Worklight*Run.me*Component*
(Common&Framework)&

Web&Code&

<!DOCTYPE&html&PUBLIC&
<html>&
<!&A&A&created&2003A12A1&
<head><Gtle>XYZ</Gtle&
</head>&
</body>&
</html>&

Device&APIs&

Worklight Server
Mobile middleware offering unified push notifications,
version management, security and integration

Worklight Console
A web-based console for real-time analytics and control
of your mobile apps and infrastructure

Worklight Studio
The most complete, extensible development
environment with maximum code reuse and per-device
optimization

Worklight Runtime Components
Extensive libraries and client APIs that expose and
interface with native device functionality and the Worklight
Server ←"

Worklight Server
Mobile middleware offering unified push notifications,
version management, security and integration

Worklight Console
A web-based console for real-time analytics and control
of your mobile apps and infrastructure

Worklight Studio
The most complete, extensible development
environment with maximum code reuse and per-device
optimization

Worklight Runtime Components
Extensive libraries and client APIs that expose and
interface with native device functionality and the Worklight
Server ←"

Saturday, 23 March 13

Build Once, Run
Anywhere...

Saturday, 23 March 13

Development Time

Saturday, 23 March 13

Toolkits vs.
Frameworks

• Toolkits - JavaScript-based libraries used
on top of JavaScript itself

• Smooth out the rough edges of JavaScript

• Add additional features, UI controls etc.

Saturday, 23 March 13

Toolkits vs.
Frameworks

• Frameworks - used on top of toolkits

• Structure applications

• Provide large-application functionality

Saturday, 23 March 13

Toolkit Options

• The largest players in the market are

• Generally, IBM prefers Dojo

Saturday, 23 March 13

Why Dojo?

• Enterprise-grade toolkit and feature set

• Stronger support for structuring large
applications

• e.g. Class system (dojo/declare)

• Better focus on internationalization,
accessibility, etc.

• But jQuery is a supported choice too for
Worklight

Saturday, 23 March 13

Do we need a
framework?

• Coding without JS toolkit in 2013 is like
entering the program in binary

• You can code without a framework, but
you lose:

• Endpoint management (stubbing)

• State / session management

• (other application-level stuff)

Saturday, 23 March 13

Generally use views
for Mobile...

• Rather than multiple .html pages, have
one

• Less page startup pain for mobile web

• Dynamically insert views (HTML) into
DOM

• Dojo Mobile has this concept built in -
dojox.mobile.view

• Reuse this concept for Hybrid too

Saturday, 23 March 13

Framework Options

• For Dojo:

• dojox/app

• issw.mobile/issw.pocMobile

• Your own custom framework

• Not as bad an idea as it sounds!

• For jQuery:

• mustache, RequireJS, Knockout JS,
Backbone, etc...

Saturday, 23 March 13

dojox/app

• Can define “page controllers” for different
views in the application

• Manages loading of views and associated
page controllers via configuration

• Also allows for declarative MVC
framework where needed (working with
dojox/mvc)

• No endpoint management, etc...

Saturday, 23 March 13

ISSW Offerings

• ISSW has offerings e.g.
issw.pocMobile. Includes:

• Extra dojox.mobile.* widgets

• Easy lazily-loaded views

• Worklight ‘mocking’ to use project
outside of WL

• Abstraction of endpoints / adapters /
services

• etc...

Saturday, 23 March 13

Structuring Code

• Whatever framework you use, follow code
structuring practices:

• 1:1 mapping between View (‘page’) and
programmatic controller class for that
page

• Dynamically load views into the DOM
on-demand to avoid overloading it

Saturday, 23 March 13

RESTful Services and
WL Adapters

Saturday, 23 March 13

RESTful Services

• The world (at least UIs) are
moving to simpler services

• A RESTful style - plain
HTTP GET, PUT, POST,
DELETE

• JSON as the data format

• Practically mandatory for
consumption by Web 2.0
clients

GET http://mycorp.com/customer/1234

{
 “name”: “Fred Bloggs”,
 “address”: “123 Anytown”
}

Saturday, 23 March 13

WL Adapters

• WL adds adapter framework

• Customized on server with
server-side JS

• Supports HTTP, JMS, SQL, and
Cast Iron adapter types

• Most common use is HTTP
adapter to integrate with
JSON/REST or SOAP/HTTP

Saturday, 23 March 13

WL Adapters - REST &
HTTP

• You could use RESTful services directly
from WL container with conventional
XHRs, but you lose:

• The ability to use the WL server as a
“choke point”

• WL’s authentication mechanism for
services

• WL Logging/Auditing

Saturday, 23 March 13

WL HTTP Adapter and
REST

• Even for services already exposed over
REST, we would re-expose them using the
WL HTTP Adapter.

• This is comparatively straightforward to
do.

• You can also use SOAP services from WL

• Abilities are limited at the moment so for
more sophisticated scenarios, consider an
ESB.

Saturday, 23 March 13

Lifecycle

Saturday, 23 March 13

Library Systems

• WL can work with most version control
systems that integrate with Eclipse

• Common choices:

• Rational Team Concert

• Git

• Subversion

Saturday, 23 March 13

Library Systems 2

• There are files that must
be excluded as they are
part of WL generated
resources, see here:
• http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/

index.jsp?topic=%2Fcom.ibm.worklight.help.doc
%2Fdevref%2Fr_integrating_with_source_contro.html

Saturday, 23 March 13

http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_integrating_with_source_contro.html

Building

• You will want to automate the build.

• WL provides the <app-builder> and
<adapter-builder> ANT tasks

• Only builds the Server portion of the
projects - the .war customisation file,
the .wlapp file, and the .adapter
files.

• You will need to build the .apk
and .ipa files using platform-native
process.

Saturday, 23 March 13

Building

• During build, externalise certain things:

• worklightServerRootUrl in
application-descriptor.xml

•server/conf/
worklight.properties

• maxConcurrentConnectionsPerN
ode for adapters

Saturday, 23 March 13

Deploying

• Deploy the .war using relevant application
server method

• Deploy the .wlapp and .adapter server-
side portions of the application using
<app-deployer> and <adapter-
deployer> ANT tasks.

Saturday, 23 March 13

Deployment Topology

• Options include:

• WebSphere
Application Server -
familiar

• WAS Liberty Profile -
simpler

• Tomcat

• Consider HTTPS,
load spraying

Saturday, 23 March 13

Deploying to Phones

• You still need to get the native application
(.ipa, .apk, etc.) onto your user’s phones.

• Testing lifecycle: AppCenter - comes
with WL server editions

• B2C: public App Stores (Apple App
Store, Google Play Store)

• B2E: Tivoli Endpoint Manager or similar

Saturday, 23 March 13

Testing

• Typically you’ll want to test:

• Manual UI on physical phones

• Coverage across devices

• Automated UI - mocking framework
and automated test tool (e.g. Selenium)

• Adapters - load / performance /
functional tests - just HTTP

Saturday, 23 March 13

Other Tips

Saturday, 23 March 13

Client-side

• Don’t optimize for size of the client like
you would do for Mobile Web

• Nevertheless, there is still a browser
control underneath

• Use WL.Logger.{debug,error} API,
logging in development environment is
customizable, & log the username on errors

Saturday, 23 March 13

Client-side

• Understand handling errors on client-side,
in particular adapter invocations:

• http://www.ibm.com/developerworks/websphere/techjournal/1212_paris/
1212_paris.html?ca=drs-

• Use connectOnStartup: false,
with WL.Client.Connect() after
startup - gives more startup control

• Write as little native code as possible

Saturday, 23 March 13

http://www.ibm.com/developerworks/websphere/techjournal/1212_paris/1212_paris.html?ca=drs-
http://www.ibm.com/developerworks/websphere/techjournal/1212_paris/1212_paris.html?ca=drs-
http://www.ibm.com/developerworks/websphere/techjournal/1212_paris/1212_paris.html?ca=drs-
http://www.ibm.com/developerworks/websphere/techjournal/1212_paris/1212_paris.html?ca=drs-

Server-side

• Again, understand how to handle errors
from adapter invocations (same article).

• Again, use WL.Logger API - has various
levels of logging, can be configured on
server. Log the username on errors.

Saturday, 23 March 13

Two Ways to Update -
Method 1

• Update your web code only

• Don’t change the version
number of the application

• Redeploy .wlapp only

• Implicitly encourages a
“Direct Update” next time
client connects.

Saturday, 23 March 13

Two Ways to Update -
Method 2

• Method 2:

• Update web code and/or
custom native code

• Do update the
application version
number

• Re-release via binary
method (App Store, etc.)

Saturday, 23 March 13

Updating Worklight

• Re-release an app using method 2

• Gets new Device Runtime onto end-
users’ phones

• But end-users can continue using old app;
wire protocol is backward-compatible

Saturday, 23 March 13

Summary

• Development Time

• Toolkits and Frameworks

• Structuring Code

• RESTful Services and Worklight Adapters

• Build Time - Library Systems, Builds / Testing /
Deployment

• Other Tips

Saturday, 23 March 13

