
 © 2012 IBM Corporation1 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Practical Performance
Understanding the Performance of Your Application

Neil Masson – IBM Java Service Technical Lead

25th September 2012

 © 2012 IBM Corporation2 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

 © 2012 IBM Corporation3 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Goals of the Talk

■ So...
– You have a performance problem..
– You are not sure what the application is doing under the covers…

■ What next ?

■ After this talk you will:
– Understand when and why to use performance tools
– Have a toolkit of performance tools and techniques
– Get to know your Java application better

 © 2012 IBM Corporation4 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Agenda

■ Performance – why should you care?

■ Approaches to performance

■ Layers of the application

■ Identifying bottlenecks

 © 2012 IBM Corporation5 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Approaches to performance

■ Outside in approach
– Start from where performance can be measured
– Work along the activity path
– Ideal for identified performance problems

■ Layered approach
– Analyze and eliminate layers of the application
– Simplify the problem as you go
– Ideal for application health check

■ A hybrid of both approaches can often be useful

 © 2012 IBM Corporation6 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Performance baseline

■ Important to have a repeatable performance test

■ Measure baseline performance
– Internal measurements affect the performance of what your measuring
– External measurements have less impact on system performance

 © 2012 IBM Corporation7 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Layers of a Java application

■ Three layers of a deployment:
– Infrastructure: Hardware and Operating System
– Java Runtime: Garbage Collection
– Java Application: Java application code

■ Each can suffer from resource constraints, typically:
– Memory
– CPU
– Synchronization
– I/O

 © 2012 IBM Corporation8 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Infrastructure

■ Typical resource constraints:
– Memory: insufficient physical memory results in paging/swapping
– CPU: insufficient CPU time limits throughput of the application
– I/O: insufficient I/O limits throughput of the application
– Synchronization driven by Java runtime/Java application

■ Easy to diagnose

■ Easy to resolve (relatively)

■ Note that each can also be caused by deficiencies higher up the stack!

 © 2012 IBM Corporation9 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Infrastructure memory usage

■ Infrastructure uses memory for:
– Backing the process data: OS runtime, Java runtime, Java application
– Caching of IO: filesystem and network buffers

■ Lack of physical memory causes:
– Reduction and removal of IO caching
– Paging/swapping of process memory to disk

■ Paging/swapping is costly for a Java process
– Particularly affects Garbage Collection performance

• Paging usually occurs on Least Recently Used basis
• All of Java heap is traversed during mark and sweep phases
• Least Recently Used does not work well for the Java heap

 © 2012 IBM Corporation10 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Infrastructure CPU usage

■ Insufficient CPU time availability will reduce performance

■ Can occur periodically:
– Cron Jobs running batch applications
– Database backups

■ Or during periods of high load:
– System becomes CPU bound, limiting performance

 © 2012 IBM Corporation11 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Detecting infrastructure issues

■ Detect using Operating System level tools

■ Memory on Windows:
– Paging: using “perfmon” with “Process” counter for “Page Faults/sec”
– File Cache: using “perfmon” with “Memory” counter for “System Cache Resident Bytes”

■ CPU on Windows:
– Per process: using “perfmon” with “Process” counter for “% Processor Time”
– Per machine: using “perfmon” with “Processor” counter for “% Processor Time”

■ IO on Windows:
– Network: using “perfmon” with “Network Interface” counter for “Output Queue Length”
– Disk: using “perform” with “Physical Disk” counter for “Current Disk Queue Length”

 © 2012 IBM Corporation12 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: baseline

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

Page Performance

Average Page Response

Baseline

Page

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 © 2012 IBM Corporation13 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Paging in perfmon

 © 2012 IBM Corporation14 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Resolving infrastructure issues

■ Add more physical resources to the process
– Assign more to the: Machine, Guest OS, LPAR, Zone, etc

■ Reduce the physical resource requirements
– Reduce the application footprint
– Reduce the application CPU usage
– Reduce the IO

 © 2012 IBM Corporation15 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: memory increased

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

Page Performance

Average Page Response

Baseline
Memory Increased

A
vg

 r
e

sp
o

n
se

 ti
m

e
 (

m
s)

 © 2012 IBM Corporation16 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: memory increased

1

2

3

4

5

6

7

8

9

10

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

Page Performance

%age changes

Memory Increased

Performance

P
a

g
e

 © 2012 IBM Corporation17 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java runtime

■ Typical resource constraints:
– Memory: insufficient Java heap results in OutOfMemory or high GC overhead
– CPU Garbage Collection overhead, or driven by Java application
– Synchronization driven by Java application
– IO driven by Java application

■ Easy to diagnose

■ Easy to resolve (relatively)

 © 2012 IBM Corporation18 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java runtime memory

■ Java runtime uses memory for:
– Java Heap(s), Java Virtual Machine (JVM), “Native” heap, OS and C-language runtime

■ Java heap(s) are managed using Garbage Collection

0 GB 4 GB

0x0 0xFFFFFFFF

2 GB

0x800000000x40000000 0xC0000000

OS and C-Runtime JVM Java Heap(s)

-Xmx

Java Heap Native Heap

■ Other memory usage can be indirectly driven by application usage and garbage collection
– eg. Java Threads

 © 2012 IBM Corporation19 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java runtime problems

■ Insufficient Java heap memory leads to:
– OutOfMemoryError due to Java heap exhaustion
– Garbage Collection running excessively, increasing CPU and affecting performance

■ Insufficient non-Java (“native”) heap leads to:
– OutOfMemoryError due to process address space exhaustion
– Driver for Java heap garbage collection (DirectByteBuffer cleaners)

 © 2012 IBM Corporation20 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Detecting Java runtime problems

■ Log and trace analysis:
– “Native” heap: OS level logs (ps, svmon, perfmon)
– Java heap: verbose:gc output

– Post processed using:
IBM Monitoring and Diagnostic Tools for Java - Garbage Collection and Memory Visualizer (GCMV
)

■ Live monitoring:
– “Native” heap IBM Monitoring and Diagnostic Tools for Java - Health Center
– Java heap: IBM Monitoring and Diagnostic Tools for Java - Health Center

Visual VM, Mission Control

 © 2012 IBM Corporation21 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Too Frequent Garbage Collection

Long Garbage Collection Cycles

Garbage collection performance
M

em
or

y

Time

Heap Size

Heap Occupancy

 © 2012 IBM Corporation22 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Too Frequent Garbage Collection

 © 2012 IBM Corporation23 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Garbage Collection Pause Times

 © 2012 IBM Corporation24 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Resolving Java runtime problems

■ Add more resources to the Java runtime
– Java heap: Increase Java heap size
– Native heap: Move to 64bit or reduce Java heap size

■ Reduce the memory requirements
– Reduce the Java application footprint

 © 2012 IBM Corporation25 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Increased Java heap size

 © 2012 IBM Corporation26 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Effect on Garbage Collection Pause Times

■ Reduction in:
– Time spent in GC 59%

■ However this is only 4.84% of total time

 © 2012 IBM Corporation27 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: Java Heap Size Increased

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

Page Performance

Average Page Response Time

Baseline
Memory Increased
Heap Size Increased

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 © 2012 IBM Corporation28 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: Java Heap Size increased

1

2

3

4

5

6

7

8

9

10

-5.0% 0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

Page Performance

%age changes

Heap Size Increased

Performance

P
a

g
e

 © 2012 IBM Corporation29 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java application

■ Typical resource constraints:
– Memory: insufficient caching affects application throughput and responsiveness
– CPU: insufficient threading causes limits on scalability
– Synchronsation: synchronized resources limits scalability and throughput of the application
– I/O: blocking on I/O limits throughput and responsiveness

■ Hard to diagnose

■ Can be expensive (or impossible!) to resolve

 © 2012 IBM Corporation30 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java application CPU usage

■ High CPU usage by Java methods highlight areas of potential optimization
– Code is being invoked more than it needs to be

• Easily done with event driven models
– An algorithm is not the most efficient

• Easily done if performance is not the focus at development time

■ Fixing CPU bound applications requires knowledge of what code is being run
– Identify methods which are suitable for optimisation

• Optimising methods which the application doesn’t spend time in is a waste of your time
– Identify methods where more time is being spent that you expect

• “Why is so much of time being spent in this trivial method?”

 © 2012 IBM Corporation31 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java application synchronization

■ Throughput does not increase linearly with load

■ At limit of throughput the CPU is still low
– Inability to scale
– Not all CPU can be utilized
– Limit on throughput and responsiveness

■ Bottleneck where threads need to synchronize with each other for application correctness
– Caused by large numbers of threads requiring synchronized resource at the same time
– Caused by long hold time by thread that owns resource
– Or a mixture of both

 © 2012 IBM Corporation32 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Health Center: application method CPU usage

 © 2012 IBM Corporation33 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Health Center: application synchronization

 © 2012 IBM Corporation34 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

ShoppingServlet.deliberateSlowMethod()

private void deliberateSlowMethod() {

// --
// User clicked on the Tulips, let's tip toe through a
// slow method
// --

System.out.println("==> STARTING SLOW METHOD");

long timestamp = System.currentTimeMillis();
long target = timestamp + SLOWTIME;

System.out.println("timestamp="+timestamp);
System.out.println("resume at="+target);
while(timestamp < target) {

timestamp = System.currentTimeMillis();

}

System.out.println("==> ENDING SLOW METHOD");
}

 © 2012 IBM Corporation35 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Health Center: application method CPU usage

 © 2012 IBM Corporation36 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Health Center: application synchronization

 © 2012 IBM Corporation37 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: deliberateSlowMethod() changed

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

Page Performance

Average Page Response

Baseline
Memory Increased
Heap Size Increased
Application Fixed

Page

R
e

sp
o

n
se

 T
im

e
 (

m
s)

 © 2012 IBM Corporation38 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: deliberateSlowMethod() changed

1

2

3

4

5

6

7

8

9

10

-40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Page Performance

%age changes

Application Fixed

Performance

P
a

g
e

 © 2012 IBM Corporation39 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java application memory usage

■ Used for “in-flight” work
– eg. Currently active transactions in a messaging system

■ Used for caching data
– Reduce volume of IO and improve responsiveness

 © 2012 IBM Corporation40 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Java application memory problems

■ Memory Leaks
– Unbounded growth of collections
– OutOfMemoryErrors

■ Memory Footprint
– Incorrectly sized caches
– Inefficient collection selection
– Leads to lower performance

■ Garbage generation
– Creation/destruction of large amounts of data
– Leads to lower performance

 © 2012 IBM Corporation41 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Analyzing your Collections

■ Eclipse Memory Analyzer Tool (MAT) provides Collection analysis:

 © 2012 IBM Corporation42 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Analyzing your garbage

■ Eclipse Memory Analyzer Tool (MAT) with the IBM Extensions for Memory Analyzer provides garbage
analysis:

 © 2012 IBM Corporation43 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Memory Footprint Summary

■ Collections exist in large numbers in many Java applications

■ Example: IBM WebSphere Application Server running PlantsByWebSphere:
– HashSet 1,551 instances
– HashMap 12,151 instances

10,600 instances (excluding HashSets)
– LinkedList 1,148 instances
– ArrayList 9,530 instances

22,829 total collection instances

– When running a 5 user test load, and using 206MB of Java heap

 © 2012 IBM Corporation44 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Summary

■ Importance of:
– Repeatable benchmark
– Incremental measurements as changes are made

■ Tools are available to help you see what's going on:
– Garbage Collection and Memory Visualizer (all vendors)
– HealthCenter (IBM only)
– Other profilers (eg. YourKit) (all vendors)
– Memory Analyzer (all vendors)

 © 2012 IBM Corporation45 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Page response performance benchmark: Summary of Changes

1

2

3

4

5

6

7

8

9

10

-40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Page Performance

%age changes

Memory Increased
Heap Size Increased
Application Fixed

Performance

P
a

g
e

 © 2012 IBM Corporation46 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Summary

■ Infrastructure resources affect performance
– Paging and Garbage Collection much less than you might expect
– However, beware of CPU “starvation” from other processes!

■ Vast majority of performance gains are in the application!

 © 2012 IBM Corporation47 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

References

■ Get Products and Technologies:
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/

■ Learn:
– Health Center InfoCenter:

• http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

■ Discuss:
– IBM on Troubleshooting Java Applications Blog:

• https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/
– Health Center Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

https://www.ibm.com/developerworks/java/jdk/tools/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

 © 2012 IBM Corporation48 WebSphere User Group: Practical Performance – Understand the Performance of Your Application

Copyright and Trademarks

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and trademark
information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

