Neil Masson — IBM Java Service Technical Lead

25" September 2012

Practical Performance
Understanding the Performance of Your Application

1 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS I1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM'S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

2 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= So...
— You have a performance problem..
— You are not sure what the application is doing under the covers...

= What next ?

= After this talk you will:
— Understand when and why to use performance tools
— Have a toolkit of performance tools and techniques
— Get to know your Java application better

3 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Performance — why should you care?

Approaches to performance

Layers of the application

|dentifying bottlenecks

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

= Qutside in approach
— Start from where performance can be measured
— Work along the activity path
— Ideal for identified performance problems

= Layered approach
— Analyze and eliminate layers of the application
— Simplify the problem as you go
— Ideal for application health check

= A hybrid of both approaches can often be useful

5 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Important to have a repeatable performance test

= Measure baseline performance
— Internal measurements affect the performance of what your measuring
— External measurements have less impact on system performance

6 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Three layers of a deployment:

— Infrastructure: Hardware and Operating System
— Java Runtime: Garbage Collection
— Java Application: Java application code

= Each can suffer from resource constraints, typically:
— Memory
- CPU
— Synchronization
—1/0

7 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Typical resource constraints:

— Memory: insufficient physical memory results in paging/swapping
— CPU: insufficient CPU time limits throughput of the application
—1/0: insufficient 1/O limits throughput of the application

— Synchronization

Easy to diagnose

Easy to resolve (relatively)

Note that each can also be caused by deficiencies higher up the stack!

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

= [nfrastructure uses memory for:
— Backing the process data: OS runtime, Java runtime, Java application
— Caching of 10: filesystem and network buffers

= Lack of physical memory causes:
— Reduction and removal of 10 caching
— Paging/swapping of process memory to disk

= Paging/swapping is costly for a Java process
— Particularly affects Garbage Collection performance
» Paging usually occurs on Least Recently Used basis
» All of Java heap is traversed during mark and sweep phases
» Least Recently Used does not work well for the Java heap

9 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= [nsufficient CPU time availability will reduce performance

= Can occur periodically:
— Cron Jobs running batch applications
— Database backups

= Or during periods of high load:
— System becomes CPU bound, limiting performance

10 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Detect using Operating System level tools

Memory on Windows:
— Paging: using “perfmon” with “Process” counter for “Page Faults/sec”
— File Cache: using “perfmon” with “Memory” counter for “System Cache Resident Bytes”

CPU on Windows:
— Per process: using “perfmon” with “Process” counter for “% Processor Time”
— Per machine: using “perfmon” with “Processor” counter for “% Processor Time”

IO on Windows:
— Network: using “perfmon” with “Network Interface” counter for “Output Queue Length”
— Disk: using “perform” with “Physical Disk” counter for “Current Disk Queue Length”

11 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Page response performance benchmark: baseline

12

Response Time (ms)

25000

20000

15000

10000

5000

0l-

1

2

Page Performance

Average Page Response

I.- .
3 4 s & 71 8 9

Page

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

|
10

W Baseline

© 2012 IBM Corporation

Paging in perfmon

@ Performance Monitor -

e e—

(=) File Action View Window Help [= [=][]
o= | 2B D= H
® Performance Era-+&#X 7 coEaur @
4 | gw Monitering Tools
BE Performance Monitor
- [Data Collector Sets 100
i @ Reports
gﬂ -
80 |
70
601 I
L
50 N
401]
30
]
207 L]
10+]
0 T t T T T T T T T
03:18:13 03:18:26 03:18:36 03:18:46 03:18:56 02:19%:06 03:17:36 032:17:46 03:17:56 0... 031812
bast| = ————— Average | =0 o—————— Minimum | - Maximum | oo Duraticon | 1:40 |
Show Color Scale Counter Instance Parent Object Computer I’
[+ — 0d Page Faults/sec java --- Process WBAILEY-W500
- J— .
13 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Add more physical resources to the process

— Assign more to the: Machine, Guest OS, LPAR, Zone, etc

= Reduce the physical resource requirements

14

— Reduce the application footprint
— Reduce the application CPU usage
— Reduce the 10

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Page response performance benchmark: memory increased

15

Avg response time (ms)

25000

20000

15000

10000

5000

2

Page Performance

Average Page Response

I--
3 4 5 6

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

es e
8 9 10

7

W Baseline
B Memory Increased

© 2012 IBM Corporation

Page response performance benchmark: memory increased

16

Page

(o3}

Page Performance

%age changes

10

4

3

.
0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

Performance

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

B Memory Increased

© 2012 IBM Corporation

= Typical resource constraints:

— Memory:

— CPU

— Synchronization
—10

= Easy to diagnose

insufficient Java heap results in OutOfMemory or high GC overhead
Garbage Collection overhead,

= Easy to resolve (relatively)

17

WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Java runtime memory

= Java runtime uses memory for:
— Java Heap(s), Java Virtual Machine (JVM), “Native” heap, OS and C-language runtime

0/GB s "I B

JVM

0x40000000 0xC0000000
0x0 0x80000000 OXFFFFFFFF

= Java heap(s) are managed using Garbage Collection

= Other memory usage can be indirectly driven by application usage and garbage collection
— eg. Java Threads

(3 Runnable 1
& Thread
@run() o priarity (3 Native Thread (9 Native Stack
o pame 1 11
1 | o started 1
@ activeCount ()
@ checkAccess ()
1.% | @ currentThread () 1
(® ThreadGroup @ destroy ()
1 @ dumpStacl: ()
o name :
) ® enumerate ()
o numThreads e.()
o ownedThreads . (3 Java Stack
@ activeCount ()
@ activeGroupCount () 1
e . ()
Java Heap Native Heap

18 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= |nsufficient Java heap memory leads to:

— OutOfMemoryError due to Java heap exhaustion
— Garbage Collection running excessively, increasing CPU and affecting performance

= |nsufficient non-Java (“native”) heap leads to:

19

— OutOfMemoryError due to process address space exhaustion
— Driver for Java heap garbage collection (DirectByteBuffer cleaners)

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

= Log and trace analysis:
— “Native” heap: OS level logs (ps, svmon, perfmon)
— Java heap: verbose:gc output

— Post processed using:
IBM Monitoring and Diagnostic Tools for Java - Garbage Collection and Memory Visualizer (GCMV

)

= Live monitoring:
— “Native” heap IBM Monitoring and Diagnostic Tools for Java - Health Center
— Java heap: IBM Monitoring and Diagnostic Tools for Java - Health Center
Visual VM, Mission Control

20 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Garbage collection performance

. Memory

21

Heap Size

'i"""f

X

SORSGarbage b otecHoR Gyaias

Time

WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Too Frequent Garbage Collection

Status &3
® Classes @

@ Environment a

ﬁ Garbage Collection o

&l yo @
8 Locking V]
W Native Memory @
i Profiling ®

3 The mean occupancy is 81%. This is high, so

ou may improve application performance by
increasing your heap size.

& The application seems to be using some

quite large objects. The largest request which
riggered an allocation failure was for 10000 KB.

(1) The recemmended command line is
- Xm336m.
&

The memaory usage of the application does not

indicate any chvicus leaks.

Fs

Used heap (after collection) and Heap size

£ Summary &2

120
100) sz_ﬁrxv_ I e\ | W S
= 7w
= 80
_g 60
<40 Heap size—|
20 Used heap (after collection)—
0
8:00 8:30 9:00 9:30 10:00 10:30 11:00

elapsed time (minutes)

GC Mode

Largest memory request

Mean garbage collection pause

Mean heap unusable due to fragmentation

Mean interval between collections

Mumber of collections

Mumber of collections triggered by allocation failure
Propeortion of time spent in Garbage Collection pauses
Proportion of time spent unpaused

Rate of garbage collection

Systern (forced) garbage collection count

Default (optthruput)
10000 KB

238 ms

15 MEB

2924 ms

o

75

816%

91.8%

437 MB/minute
0

22

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Garbage Collection Pause Times

[E} status =2 = O &% Pause Times &3 = O
© Classes @
® Enviromment o Pause times (not including exclusive access)
I Garbage Collection = 700
: =
e o S
& Locki =
_— .
....... ry
B Mative Memo 7] E 300
1t Profiling @ o 200
22]
< 100
11 Analysis and Recommendations 3 = O 0
& The application seems to be using some 20:00 25:00 30:00
quite large chjects, The largest request which . :
Itriggered an allocation failure was for 10000 KB. elanced time (minufec)
E Summary 23 Object Allocations = O

& The mean cccupancy is 80%. This is high, so

you may improve application performance by
increasing your heap sizeIncreasing the heap size
should reduce the garbage collection overhead
from its current reported level of B3,

(1) The recornmended command line is
-Xme343m -Xmaxfl.g.

[

The memory usage of the application does not

indicate any cbvious leaks,

-~

GC Maode

Largest memorny request

Mean garbage collection pause

Mean heap unusable due to fragmentation
Mean interval between collections
Mumber of collections

Murnber of collections triggered by allocation failure

Default (optthruput)
10000 KB

250 ms

2.99 MB

3961 ms

269

264

Proportion of time spent in Garbage Collection pauses 6.32%

Proportion of time spent unpaused 93.7%
Rate of garbage collection 226 ME/minute
Systern (forced) garbage collection count 0
23 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Add more resources to the Java runtime

— Java heap: Increase Java heap size
— Native heap: Move to 64bit or reduce Java heap size

= Reduce the memory requirements

24

— Reduce the Java application footprint

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Increased Java heap size

[Z status 52

(& Classes w
Used heap (after collection) and Heap size

@ Environment [x]

ﬁ Garbage Collection &
«l vo ®

{5 Locking @

3
g

Heap size—

B Mative Memory @

—
[=a]
=
—
@
i
v

1% Profiling 7]

Used heap (after collection)—

i? Analysis and Recommendations £

-

& The application seems to be using some quite 10:00 11:00

- large ohjects. The largest request which triggered an
allocation failure was for 10000 KB.

& The mean occupancy is 57%. This is close to = Summary 52 |

optirmal, so you do not need to tune your heap size. -
GC Mode Default (optthruput)
Largest memory request 10000 KB
Mean garbage collection pause 326 ms
Mean heap unusable due to fragmentation 11.2 MBE
Mean interval between collections 9824 ms
Mumber of collections 25

Mumber of collections triggered by allocation failure 25
Proportion of time spent in Garbage Collection pauses 3.32%

Proportion of time spent unpaused 96.7%
Rate of garbage collection 379 MB/minute
Systemn (forced) garbage collection count a

25 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Effect on Garbage Collection Pause Times

= Reduction in:
— Time spent in GC 59%

= However this is only 4.84% of total time

26 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Page response performance benchmark: Java Heap Size Increased

27

Response Time (ms)

25000

20000

15000

10000

5000

0Il-

1

2

Page Performance

Average Page Response Time

II-
3 4 5 6

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

mem Ham BE=
8 9 10

B Baseline
B Memory Increased
Heap Size Increased

© 2012 IBM Corporation

Page response performance benchmark: Java Heap Size increased

28

Page

Page Performance

%age changes

10

-5.0%

0.0%

5.0%

10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

Performance

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

B Heap Size Increased

© 2012 IBM Corporation

= Typical resource constraints:

— Memory:

— CPU:

— Synchronsation:
—1/0:

= Hard to diagnose

insufficient caching affects application throughput and responsiveness
insufficient threading causes limits on scalability

synchronized resources limits scalability and throughput of the application
blocking on I/O limits throughput and responsiveness

= Can be expensive (or impossible!) to resolve

29

WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= High CPU usage by Java methods highlight areas of potential optimization
— Code is being invoked more than it needs to be
» Easily done with event driven models
— An algorithm is not the most efficient
» Easily done if performance is not the focus at development time

= Fixing CPU bound applications requires knowledge of what code is being run
— Identify methods which are suitable for optimisation
» Optimising methods which the application doesn’t spend time in is a waste of your time
— Identify methods where more time is being spent that you expect
* “Why is so much of time being spent in this trivial method?”

30 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Throughput does not increase linearly with load

= At limit of throughput the CPU is still low
— Inability to scale
— Not all CPU can be utilized
— Limit on throughput and responsiveness

= Bottleneck where threads need to synchronize with each other for application correctness
— Caused by large numbers of threads requiring synchronized resource at the same time
— Caused by long hold time by thread that owns resource
— Or a mixture of both

31 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Health Center: application method CPU usage

Zenes @ menodprote 23 [=0

® Classes 6]

[Garbage Collection & 80.5 - 80.5 _ com.ibm.websphere.samples.plantsbywebspherewar.ShoppingServlet.deliberateSlowMethod()
0.68 389 | java.io.ObjectlnputStream. defaultReadFields(java.lang. Object, java.io.ObjectStreamClass)

231 0.98 com.ibm.rmi.iiop.CORReader.availableData(int, int, int)

225 412 | java.io.ObjectinputStream.readObjectld{boolean)

135 406 | java.io.ObjectnputStream. read Ordinary Object(boolean)

b Mative Memory] 0.58 java.ic.ObjectinputStream.readHandle(boolean)

@& Environment a2 -
Samples | Self (%5) Self Tree (%) Tree Method
29692
252

el o ®
(& Locking @

java.io.ObjectlnputStream.readArray(boolean)

15 Profil
5 Profiling java.io.ObjectinputStream.readSerialData(java.lang. Object, java.io.ObjectStreamClass)

88

83

72 com.ibm.rmiiiop. CORReader.alignAndCheck(com.ibm,jtc.orb.nio.Aligner, int, int)

Pl java.io.ObjectinputStreamS$BlockDatalnputStream.readint()
& The method &5

* ShoppingServiet.deliberateSlowMethod() is b4 com.ibm.rmi.iiop IOPOutputStream.sendFragment()

censuming approximately 80% of the CPU cycles, 63 java.io.ObjectinputStreamSBlockDatalnputStream.read UTFBody(leng)

com.ibm.rmi.iiop.ColocatedlnputStream.mark()

It may be a good candidate for optimization. 53
(E,IJ The menitored JVM generated more data 53

com.ibm.rmi.iiop. CORReader.read_wstring ()
com.ibm.rmi.iiop.ObjectCopierFactorySAbstractCopier.run()

han the client could consume, and o some 50 com.ibm.rmi.iiop.CDRInputStream.read_octet_array(byte[], int, int)
samples have been lost. Profile accuracy should 49

not be significantly affected java.io.ObjectinputStream.readString(boolean)

45 org.apache.derby.iapi.types.5QLBinary.readFromStreami(java.ioInputStream)
37 java.io.ObjectinputStreamSHandleTable.markDependency(int, int)
34 java.lang.ClassLoader.defineClassImpl(java.lang.String, byte[], int, int, java.lang.Object)

@ Invocation paths &2

@} ShoppingServiet.deliberateSlowMethod
D SheppingServiet.performTask (100%)
@) ShoppingServiet.doGet (100%)
) HttpServiet.service (100%5)

32 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Health Center: application synchronization

[lis Monitors bar chart &2

Inflated Java Monitors
®

@ Environment a Slow (height) and % miss (color)
H z = z g g g
m Garbage Collection ¢ 300 = = g I z = =
5 : Z g :
g 2 3 z -
«l vo ® 2 2 2 g i 3 2
& & =] =1 = E=]
- < g 2 2 -] e
E |_ k 5 3 o o g o o
Locking @ : : e E E E
- : 2 2
. E [<d [<d & o4 [od
B Mative Memory 7] £ 200 % % g g i 3 g
z = E = = 3 £ £
1% Profilin & = = = z Ei E B
o5 Profiling £ K B 3 E = E z
g E E 3
[Analysis and Recommendations 22 =~ =z = £ £ £ £
~ = 100 z 7 z E E z
& Mo problems detected, = = <:. 3 é‘_
o = E
@ £ E 2
2 o o
5 Z
5 g
= 2
= =
0.0

Monitor

%2 miss aels Slow Recursive %o util Awverage hold time Mame
a 7126 1 0 0 94238 [18DD27F8] com/ibm/ws/util/BoundedBufferiGetQueuel ack@015EC2T0 (Object) 3
] 5845 0 3605 0 79453 [16CEBAT4] com/ibm/rmi/iiop/WorkQueue@013DBE0E (Object)
] 3761 0 0 0 125672 [18DD27F8] com/ibm/ws/util/BoundedBufferSGetQueuel ock@015EC290 (Object)
1 3536 29 0 0 14120 [18F86388] com/ibm/ws/util/BoundedBuffer§ GetQueuel ock@0211A0C0 (Object)
] 3186 0 1870 0 81191 [16C83AT4] com/ibm/rmifiicp/WorkQueue@I13DBCDO (Object)
0 2879 0 0 0 93486 [16CB7130] java/util/concurrent/ConcurrentSkipListMap@015EED2E (Object)
N n 7AD n n = n BE130 MACETAM] ;e filem e il R d e d B offar@ R et Minanal ael @] G2EANE Mzt . e

33 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

34

private void deliberateSlowMethod() {

F A e
// User clicked on the Tulips, let's tip toe through a

// slow method

F A I L LR

System.out.println("==> STARTING SLOW METHOD");

long timestamp = System.currentTimeMillis();
long target = timestamp + SLOWTIME;

System.out.println("timestamp="+timestamp);
System.out.println("resume at="+target);
while(timestamp < target) {

timestamp = System.currentTimeMillis();

}

System.out.println("==> ENDING SLOW METHOD");

WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Health Center: application method CPU usage

BT cpn. oo | — §
2 £ 1| @ Method profile &2

@ Environment (%]

Sa;pls Self (%) Self Tree (%) Tree
214 N 655 N com.ibm.rmi.iiop.CDRReader.availableDatalint, int, int)

m Garbage Collection ¢

. 3.09 | 16.5 java.o.ObjectinputStream. defaultReadFields(java.lang.Object, java.io.ObjectStreamClass)
o ® 259 | 169 java.ic. ObjectlnputStream.read Objectl(boclean)
&) Locking) 138 16.8 java.io ObjectinputStream,readOrdinaryObject(boclean)
13 244 java.io.ObjectinputStream.readHandle{boclean)
e Mative Mermory V] 1.2 79 com.ibm.rmi.iiop.CORReader.align&ndCheck(com.ibm.jtc.orb.nic.Aligner, int, int)
- 1.21 1.44 com.ibm.rmidicp. CORReader.read_wstring()
i Frefling @ java.util. Properties.loadlmpl(java.io.Reader)
= Analysis and Recommendations 52 = 1.06 142 com.ibm.rmi.iiop.ColocatedlnputStream.mark(()
1.2 com.ibm.rmi.util. buffer.ColocatedByteBuffer.write(byte(], int, int)
@ Execution time was relatively evenly i java.ic.ObjectinputStream.readArray(boolean)
_ balanced between methods. Mo obvious java.io.ObjectinputStream$BlockDatalnputStream.readint()
candidates for optimization were found. java.io.ObjectinputStream. readSerialData(java.lang. Object, java.io.ObjectStreamClass)
java.ic.ObjectinputStreamSHandleTable.markDependency(int, int)
org.apache.derby.impl.storeraw.data.StoredPage.readRecordFromarray(j.l. Object[], int, int[], int[
java.ic.ObjectinputStreamSBlockDatalnputStream.readUTFBody(long)
sun.io.ByteToCharSingleByte.convert{byte[], int, int, char[], int, int)
iava in OthiertlnnotStream readStrinnlhnnleand
@ Invocation paths 1 | &5
R —
{{} CDRReader.availableData -
(@) CDORReader.alignAndCheck (1003%5) @
) CDRInputStream.read_octet_array (85.0%)
(@ DOPInputStrearn.readPrimArray (99.4%)
(I} CDRReader.readBytesForString (0.44%)
I} CORInputStream.<init> (0.15%)
- @ CDRInputStream.read_long (10.6%) 57

35 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Health Center: application synchronization

|lin Monitors bar chart 3 = L
@ Environment a Slow (height) and % miss (colar)
I T I . I I
i} Garbage Collection & § g z £ g. §
5
. g :
= vo ® 100 o £ 2 2 g
z]] e =
& Locking @ E E E E E
< 80 : : _"F. : 2
@ : i ! !
- E E z g Z e
i Profiling @ = 60 = 3 g i i
2 E E g E E
S E E E E E
[Analysis and Recornmendations 3 x i = = : g g
(=] E
& Mo problems detected. i % % % £ %
@ E £ g F
20 g 5 g‘ -
- :
0_
Monitor
&) Monitors 52 = = [
%miss Gets Slow Recursive % util Average hold time Name =
0 15.. 7] 0 43818 [18D668E4] com/ibm/ws/util/BoundedBufferSGetQueuel ock@015C9960 (Object) =
1 105.. 107 0 0 43857 [1B6743C4] com/ibm/ws/util/BoundedBuffersGetQueuel ock@0207FETS (Object)
0 9808] 5864 0 84006 [16D0OE218] com/ibm/rmifiiop/WorkQueue@013CAS28 (Object)
0 Bl61] 3758 0 82741 [16DOEZ18] com/ibm/rmifiiop/WorkQueue@013CAS70 (Object)
0 6000 0 0] 124049 [1BE07BD4] java/util/concurrent/ConcurrentSkipListhap@015CT74B8 (Object)
0 4930]] 0 55780 [18D66884] com/ibm/ws/util/BoundedBufferSGetQueuel ock@015CIBCD (Object)
| n_ 4987 2 il n AT0A MONACIOAT - Sk e Gl Ronn dedP o erGatMnenal ael @01 52F72 (Ohiact) i
- ||| * 1] 3

36 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Page response performance benchmark: deliberateSlowMethod() changed

37

Response Time (ms)

25000

20000

15000

10000

5000

0Ill-. II-.'--
1 2 3 4 5 6

Page Performance

Average Page Response

e m Bm o mm =
7 8 9 10

Page

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

M Baseline

® Memory Increased
Heap Size Increased

| Application Fixed

© 2012 IBM Corporation

Page response performance benchmark: deliberateSlowMethod() changed

38

Page

-40.0%

-20.0%

10

1

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Page Performance

%age changes

Performance

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

Application Fixed

© 2012 IBM Corporation

= Used for “in-flight” work
— eg. Currently active transactions in a messaging system

= Used for caching data
— Reduce volume of 10 and improve responsiveness

39 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

= Memory Leaks
— Unbounded growth of collections
— OutOfMemoryErrors

= Memory Footprint
— Incorrectly sized caches
— Inefficient collection selection
— Leads to lower performance

= Garbage generation
— Creation/destruction of large amounts of data
— Leads to lower performance

40 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

Analyzing your Collections

= Eclipse Memory Analyzer Tool (MAT) provides Collection analysis:

g core.20100818.124428 40400002 dmp.zip &2 l

ionl Feowl| E-B | Q

1.9 MB
41MB

1231 B

41

Size:; 206.6 MB Classes

~ Biggest Objects by F

f1° &

g

-
g

List objects

Show chjects by class

Path To GC Roots

Merge Shortest Paths to GC Roots
Eclipse

IEM Extensicns

Java Basics

lava Collections

Leak Identification

Immediate Dominators

Show Retained Set
Search Queries...

History

le Objects Histogram

e .

Array Fill Ratic I}
Arrays Grouped By Size

Collection Fill Ratic

Collections Grouped By Size

Extract Hash Set Values

Extract List Values

Hash Entries

Map Collision Ratic

Primitive Arrays With a Constant Yalue

/

Total: 206.6 MB

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Analyzing your garbage

= Eclipse Memory Analyzer Tool (MAT) with the IBM Extensions for Memory Analyzer provides garbage

analysis:

2 core20100818.124428.4040.0002.dmp.zip 57

ioml R e | BEl B | Q)

Size: 206.6 MB Classes

~ Biggest Objects by F

1.3 MB
41MBE

k3
1=

il g

-
i

List objects

Show chjects by class

Path To GC Roots

Merge Shortest Paths to GC Roots
Eclipse

IEM Extensions

Java Basics

Java Collections

Leak Identification

Immediate Dominators

Show Retained Set
Search Queries...

History

= O
»
»
3
, fctsHistogram
»
» CICS Transaction Gateway »
3 I 3
Java SE Runtime -1 5 MB
k Utilities » Calculate Aggregate
4 WebSphere Application Server 4 Calculate Maive Retained Heap Size
WebSphere eXtreme Scale + Create Pie Chart
_ Display Object Identifier
Ctrle Q) Export Object
Find Allocation Sites
Ctrl+H »

/

1251 MB

Remainder

42

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

Total: 206.6 MB

Find Garbage Fragments
Find Object by Identifier
Find Objects

Linked List Information
List All GC Roots

List All Objects

© 2012 IBM Corporation

= Collections exist in large numbers in many Java applications

= Example: IBM WebSphere Application Server running PlantsByWebSphere:
— HashSet 1,551 instances

— HashMap 12,151 instances
10,600 instances (excluding HashSets)

— LinkedList 1,148 instances

— ArrayList 9,530 instances
22,829 total collection instances

—When running a 5 user test load, and using 206MB of Java heap

43 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Importance of:
— Repeatable benchmark
— Incremental measurements as changes are made

= Tools are available to help you see what's going on:
— Garbage Collection and Memory Visualizer (all vendors)

— HealthCenter (IBM only)
— Other profilers (eg. YourKit) (all vendors)
— Memory Analyzer (all vendors)
44 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

Page response performance benchmark: Summary of Changes

45

Page

-40.0%

-20.0%

Page Performance

%age changes

1
O
8 h
"I
B Memory Increased
6 h B Heap Size Increased
Application Fixed
S h
4
3
2
o |
0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Performance

WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

= Infrastructure resources affect performance
— Paging and Garbage Collection much less than you might expect
— However, beware of CPU “starvation” from other processes!

= Vast majority of performance gains are in the application!

46 WebSphere User Group: Practical Performance — Understand the Performance of Your Application

© 2012 IBM Corporation

= Get Products and Technologies:
— IBM Monitoring and Diagnostic Tools for Java:

= | earn:
— Health Center InfoCenter:

* Discuss:
— IBM on Troubleshooting Java Applications Blog:

— Health Center Forum:

— IBM Java Runtimes and SDKs Forum:

47 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

https://www.ibm.com/developerworks/java/jdk/tools/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web — see the IBM “Copyright and trademark
information” page at URL.:

48 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

