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THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS I1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM'S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS
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= So...
— You have a performance problem..
— You are not sure what the application is doing under the covers...

= What next ?

= After this talk you will:
— Understand when and why to use performance tools
— Have a toolkit of performance tools and techniques
— Get to know your Java application better
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Performance — why should you care?

Approaches to performance

Layers of the application

|dentifying bottlenecks
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= Qutside in approach
— Start from where performance can be measured
— Work along the activity path
— Ideal for identified performance problems

= Layered approach
— Analyze and eliminate layers of the application
— Simplify the problem as you go
— Ideal for application health check

= A hybrid of both approaches can often be useful
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= Important to have a repeatable performance test

= Measure baseline performance
— Internal measurements affect the performance of what your measuring
— External measurements have less impact on system performance
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= Three layers of a deployment:

— Infrastructure: Hardware and Operating System
— Java Runtime: Garbage Collection
— Java Application: Java application code

= Each can suffer from resource constraints, typically:
— Memory
- CPU
— Synchronization
—1/0
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Typical resource constraints:

— Memory: insufficient physical memory results in paging/swapping
— CPU: insufficient CPU time limits throughput of the application
—1/0: insufficient 1/O limits throughput of the application

— Synchronization

Easy to diagnose

Easy to resolve (relatively)

Note that each can also be caused by deficiencies higher up the stack!
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= [nfrastructure uses memory for:
— Backing the process data: OS runtime, Java runtime, Java application
— Caching of 10: filesystem and network buffers

= Lack of physical memory causes:
— Reduction and removal of 10 caching
— Paging/swapping of process memory to disk

= Paging/swapping is costly for a Java process
— Particularly affects Garbage Collection performance
» Paging usually occurs on Least Recently Used basis
» All of Java heap is traversed during mark and sweep phases
» Least Recently Used does not work well for the Java heap
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= [nsufficient CPU time availability will reduce performance

= Can occur periodically:
— Cron Jobs running batch applications
— Database backups

= Or during periods of high load:
— System becomes CPU bound, limiting performance
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Detect using Operating System level tools

Memory on Windows:
— Paging: using “perfmon” with “Process” counter for “Page Faults/sec”
— File Cache: using “perfmon” with “Memory” counter for “System Cache Resident Bytes”

CPU on Windows:
— Per process: using “perfmon” with “Process” counter for “% Processor Time”
— Per machine: using “perfmon” with “Processor” counter for “% Processor Time”

IO on Windows:
— Network: using “perfmon” with “Network Interface” counter for “Output Queue Length”
— Disk: using “perform” with “Physical Disk” counter for “Current Disk Queue Length”
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Page response performance benchmark: baseline
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Paging in perfmon
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= Add more physical resources to the process

— Assign more to the: Machine, Guest OS, LPAR, Zone, etc

= Reduce the physical resource requirements
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— Reduce the application footprint
— Reduce the application CPU usage
— Reduce the 10
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Page response performance benchmark: memory increased
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Page response performance benchmark: memory increased
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= Typical resource constraints:

— Memory:

— CPU

— Synchronization
—10

= Easy to diagnose

insufficient Java heap results in OutOfMemory or high GC overhead
Garbage Collection overhead,

= Easy to resolve (relatively)

17
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Java runtime memory

= Java runtime uses memory for:
— Java Heap(s), Java Virtual Machine (JVM), “Native” heap, OS and C-language runtime

0/GB s "I B

JVM

0x40000000 0xC0000000
0x0 0x80000000 OXFFFFFFFF

= Java heap(s) are managed using Garbage Collection

= Other memory usage can be indirectly driven by application usage and garbage collection
— eg. Java Threads

(3 Runnable 1
& Thread
@run() o priarity (3 Native Thread (9 Native Stack
o pame 1 11
1 | o started 1
@ activeCount ()
@ checkAccess ()
1.% | @ currentThread () 1
(® ThreadGroup @ destroy ()
1 @ dumpStacl: ()
o name :
) ® enumerate ()
o numThreads e.()
o ownedThreads . (3 Java Stack
@ activeCount ()
@ activeGroupCount () 1
e . ()
Java Heap Native Heap
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= |nsufficient Java heap memory leads to:

— OutOfMemoryError due to Java heap exhaustion
— Garbage Collection running excessively, increasing CPU and affecting performance

= |nsufficient non-Java (“native”) heap leads to:
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— OutOfMemoryError due to process address space exhaustion
— Driver for Java heap garbage collection (DirectByteBuffer cleaners)
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= Log and trace analysis:
— “Native” heap: OS level logs (ps, svmon, perfmon)
— Java heap: verbose:gc output

— Post processed using:
IBM Monitoring and Diagnostic Tools for Java - Garbage Collection and Memory Visualizer (GCMV

)

= Live monitoring:
— “Native” heap IBM Monitoring and Diagnostic Tools for Java - Health Center
— Java heap: IBM Monitoring and Diagnostic Tools for Java - Health Center
Visual VM, Mission Control
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Garbage collection performance
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Too Frequent Garbage Collection
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Garbage Collection Pause Times
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= Add more resources to the Java runtime

— Java heap: Increase Java heap size
— Native heap: Move to 64bit or reduce Java heap size

= Reduce the memory requirements

24

— Reduce the Java application footprint
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Increased Java heap size
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Effect on Garbage Collection Pause Times

= Reduction in:
— Time spent in GC 59%

= However this is only 4.84% of total time
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Page response performance benchmark: Java Heap Size Increased
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Page response performance benchmark: Java Heap Size increased
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= Typical resource constraints:

— Memory:

— CPU:

— Synchronsation:
—1/0:

= Hard to diagnose

insufficient caching affects application throughput and responsiveness
insufficient threading causes limits on scalability

synchronized resources limits scalability and throughput of the application
blocking on I/O limits throughput and responsiveness

= Can be expensive (or impossible!) to resolve

29
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= High CPU usage by Java methods highlight areas of potential optimization
— Code is being invoked more than it needs to be
» Easily done with event driven models
— An algorithm is not the most efficient
» Easily done if performance is not the focus at development time

= Fixing CPU bound applications requires knowledge of what code is being run
— Identify methods which are suitable for optimisation
» Optimising methods which the application doesn’t spend time in is a waste of your time
— Identify methods where more time is being spent that you expect
* “Why is so much of time being spent in this trivial method?”
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= Throughput does not increase linearly with load

= At limit of throughput the CPU is still low
— Inability to scale
— Not all CPU can be utilized
— Limit on throughput and responsiveness

= Bottleneck where threads need to synchronize with each other for application correctness
— Caused by large numbers of threads requiring synchronized resource at the same time
— Caused by long hold time by thread that owns resource
— Or a mixture of both
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Health Center: application method CPU usage
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Health Center: application synchronization
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private void deliberateSlowMethod() {

F A e
// User clicked on the Tulips, let's tip toe through a

// slow method

F A I L LR

System.out.println("==> STARTING SLOW METHOD");

long timestamp = System.currentTimeMillis();
long target = timestamp + SLOWTIME;

System.out.println("timestamp="+timestamp);
System.out.println("resume at="+target);
while(timestamp < target) {

timestamp = System.currentTimeMillis();

}

System.out.println("==> ENDING SLOW METHOD");
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Health Center: application method CPU usage
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Health Center: application synchronization
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Page response performance benchmark: deliberateSlowMethod() changed
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Page response performance benchmark: deliberateSlowMethod() changed

38

Page

-40.0%

-20.0%

10

1

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Page Performance

%age changes

Performance

WebSphere User Group: Practical Performance — Understand the Performance of Your Application

Application Fixed

© 2012 IBM Corporation



= Used for “in-flight” work
— eg. Currently active transactions in a messaging system

= Used for caching data
— Reduce volume of 10 and improve responsiveness
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= Memory Leaks
— Unbounded growth of collections
— OutOfMemoryErrors

= Memory Footprint
— Incorrectly sized caches
— Inefficient collection selection
— Leads to lower performance

= Garbage generation
— Creation/destruction of large amounts of data
— Leads to lower performance
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Analyzing your Collections

= Eclipse Memory Analyzer Tool (MAT) provides Collection analysis:
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/

Total: 206.6 MB
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Analyzing your garbage

= Eclipse Memory Analyzer Tool (MAT) with the IBM Extensions for Memory Analyzer provides garbage

analysis:

2 core20100818.124428.4040.0002.dmp.zip 57

ioml R e | BEl B | Q)

Size: 206.6 MB Classes

~ Biggest Objects by F

1.3 MB
41MBE

k3
1=

il g

-
i

List objects

Show chjects by class

Path To GC Roots

Merge Shortest Paths to GC Roots
Eclipse

IEM Extensions

Java Basics

Java Collections

Leak Identification

Immediate Dominators

Show Retained Set
Search Queries...

History

= O
»
»
3
, fctsHistogram
»
» CICS Transaction Gateway »
3 I 3
Java SE Runtime -1 5 MB
k Utilities » Calculate Aggregate
4 WebSphere Application Server 4 Calculate Maive Retained Heap Size
WebSphere eXtreme Scale + Create Pie Chart
_ Display Object Identifier
Ctrle Q) Export Object
Find Allocation Sites
Ctrl+H »

/

1251 MB

Remainder
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Find Garbage Fragments
Find Object by Identifier
Find Objects

Linked List Information
List All GC Roots

List All Objects
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= Collections exist in large numbers in many Java applications

= Example: IBM WebSphere Application Server running PlantsByWebSphere:
— HashSet 1,551 instances

— HashMap 12,151 instances
10,600 instances (excluding HashSets)

— LinkedList 1,148 instances

— ArrayList 9,530 instances
22,829 total collection instances

—When running a 5 user test load, and using 206MB of Java heap
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= Importance of:
— Repeatable benchmark
— Incremental measurements as changes are made

= Tools are available to help you see what's going on:
— Garbage Collection and Memory Visualizer (all vendors)

— HealthCenter (IBM only)
— Other profilers (eg. YourKit) (all vendors)
— Memory Analyzer (all vendors)
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Page response performance benchmark: Summary of Changes

45

Page
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= Infrastructure resources affect performance
— Paging and Garbage Collection much less than you might expect
— However, beware of CPU “starvation” from other processes!

= Vast majority of performance gains are in the application!
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= Get Products and Technologies:
— IBM Monitoring and Diagnostic Tools for Java:

= | earn:
— Health Center InfoCenter:

* Discuss:
— IBM on Troubleshooting Java Applications Blog:

— Health Center Forum:

— IBM Java Runtimes and SDKs Forum:

47 WebSphere User Group: Practical Performance — Understand the Performance of Your Application © 2012 IBM Corporation


https://www.ibm.com/developerworks/java/jdk/tools/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web — see the IBM “Copyright and trademark
information” page at URL.:
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