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Overview

■ Introduction to Generational Garbage Collection

■ The “tenured” space
– aka the “old” generation

■ The “nursery” space
– aka the “young” generation

■ Migrating from other garbage collection modes
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Introduction to Generational Garbage Collection

■ Motivation: Most objects die young

■ Most objects are “temporary”
– Used as part of a calculation or transform
– Used as part of a business transaction

■ Simple example: String concatenation
–      String str = new String ("String  ");
–      str += "Concatenated!";

– Results in the creation of 3 objects:
• String object, containing “String “
• A StringBuffer, containing “String “, and with “Concatenated!” then appended
• String object, containing the result: “String Concatenated!”

– 2 of those 3 objects are no longer required! 
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Introduction to Generational Garbage Collection

■ Solution: Garbage collect young objects more frequently

■ Create an additional area for young objects (nursery)
– Create new objects into the additional area
– Garbage collection focuses on the new area
– Objects that survive in the new area are moved to the main area

Nursery Space Tenured (old) Space

●New object allocations
●GC'd frequently

●Objects surviving from the nursery only
●GC'd infrequently
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The tenured (old) space

■ Exactly the same as the Java heap in the non-Generational case
– “New” objects just happen to be copied (tenured) from the nursery space
– Meaning less garbage to collect, and much fewer GC cycles occurring

■ Garbage collected using parallel concurrent mark/sweep with compaction avoidance
– The same as running “optavgpause” in the non-Generational case
– Designed to use available CPUs and processing power using GC helper threads:

• Additional parked thread per available processing unit
• Wakes up during GC to share workload
• Configured using -Xgcthreads

– Reduces GC pause times by marking and sweeping concurrently
• Reduction in pause times of 90 to 95% vs. non-concurrent GC
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Concurrent Mark – hidden object issue

 Higher heap usage…
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The “correct” tenured heap size

■ GC will adapt heap size to keep occupancy between 40% and 70%
– Heap occupancy over 70% causes frequent GC cycles

• Which generally means reduced performance
– Heap occupancy below 40% means infrequent GC cycles, but cycles longer than they needs to be

• Which means longer pause times than necessary
• Which generally means reduced performance

■ The maximum heap size setting should therefore be 43% larger than the maximum occupancy of the 
application

– Maximum occupancy + 43% means occupancy at 70% of total heap
– eg. For 70MB occupancy, 100MB Max heap required, which is 70MB + 43% of 70MB
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The “correct” tenured heap size

Long Garbage Collection Cycles

Too Frequent Garbage Collection
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Fixed heap sizes vs. Variable heap sizes

■ Should the heap size be “fixed”?
– ie. Minimum heap size (-Xms) = Maximum heap size (-Xmx)?

■ Each option has advantages and disadvantages
– As for most performance tuning, you must select which is right for the particular application

■ Variable Heap Sizes
– GC will adapt heap size to keep occupancy between 40% and 70%
– Expands and Shrinks the Java heap
– Allows for scenario where usage varies over time
– Where variations would take usage outside of the 40-70% window

■ Fixed Heap Sizes
– Does not expand or shrink the Java heap
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Heap expansion and shrinkage

■ Act of heap expansion and shrinkage is relatively “cheap”

■ However, a compaction of the Java heap is sometimes required
– Expansion: for some expansions, GC may have already compacted to try to allocate the object 

before expansion
– Shrinkage: GC may need to compact to move objects from the area of the heap being “shrunk”

■ Whilst expansion and shrinkage optimizes heap occupancy, it (usually) does so at the cost of 
compaction cycles
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Conditions for expansion

■ Not enough free space available for object allocation after GC has complete
– Occurs after a compaction cycle
– Typically occurs where there is fragmentation or during rapid occupancy growth (ie, application 

startup)

■ Heap occupancy is over 70%
– Compaction unlikely

■ More than 13% of time is spent in GC
– Compaction unlikely
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Conditions for shrinkage

■ Heap occupancy is under 40%

■ And the following is not true:
– Heap has been recently expanded (last 3 cycles)
– GC is a result of a System.GC() call

■ Compaction occurs if:
– An object exists in the area being shrunk
– GC did not shrink on the previous cycle

■ Compaction is therefore likely to occur
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Introduction to -Xminf and -Xmaxf

■ The –Xmaxf and –Xminf settings control the 40% and 70% occupancy bounds
– -Xmaxf: the maximum heap space free before shrinkage (default is 0.6 for 60%)
– -Xminf: the minimum heap space before expansion (default is 0.3 for 70%)

■ Can be used to “move” optimum occupancy window if required by the application
– eg. Lower heap utilization required for more infrequenct GC cycles

■ Can be used to prevent shrinkage
– -Xmaxf1.0 would mean shrinkage only when heap is 100% free
– Would completely remove shrinkage capability
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Introduction to -Xmine and -Xmaxe

■ The –Xmaxe and –Xmine settings control the bounds of the size of each expansion step
– -Xmaxe: the maximum amount of memory to add to the heap size in the case of expansion 

(default is unlimited)
– -Xmine: the minimum amount of memory to add to the heap size in the case of expansion (default 

is 1MB)

■ Can be used to reduce/prevent compaction due to expansion
– Reduce expansions by setting a large -Xmine
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Garbage Collection managed heap sizing

Long Garbage Collection Cycles
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Fixed or variable?

■ Again, dependent on application

■ For “flat” memory usage, use fixed

■ For widely varying memory usage, consider variable

■ Variable provides more flexibility and ability to avoid OutOfMemoryErrors
– Some of the disadvantages can be avoided:
– -Xms set to lowest steady state memory usage prevents expansion at startup
– -Xmaxf1 will remove shrinkage
– -Xminf can be used to prevent compaction before expansion
– -Xmine can be used to reduce expansions
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The nursery (young) space

■ All objects allocated into the nursery space*
– * unless objects are too large to fit into the nursery

■ Garbage collection focuses on the nursery space
– Garbage collected frequently
– Garbage collections are fast (short in duration)
– Most object do not survive a collection
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Allocate Space Survivor Space

Nursery/Young Generation

Survivor Space Allocate Space

Nursery space implementation

●Nursery is split into 2 spaces:

● Allocate space: used for new allocations and objects that survived previous collections
● Survivor space: used for objects surviving this collection

●Collection causes live objects to be:

● copied from allocate space to survivor space
● copied to the tenured space if they have survived sufficient collections

■ Note: spaces are not equal in size – not all objects will survive so Survivor space can be smaller than 
Allocate space. - “Tilt Ratio”
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Nursery space considerations

■ Nursery collections work by copying data from allocate to survivor
– Copying of data is a relative expensive (time consuming) task

■ Nursery collection duration is proportional to amount of data copied
– Number of objects and size of nursery heap are only secondary factors*

■ Only a finite / fixed amount of data needs to copied
– The amount of data being used for any in-flight work (transactions)
– ie. For a WebContainer with 50 threads, there can only be 50 in-flight transactions at any time

■ The duration of a nursery collection is fixed, and dependent on the size of a set of transactions
– Not dependent on the size of the nursery*

*size of the heap does have a small effect, but this is related to traversal of memory only
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Optimal size for the nursery space

■ Theory shows that the longer the time between nursery collections, the less times on average an 
object is copied:

Time between collections 
(in transactions)

Average Number of 
times data is copied

X1

X2

X4

10.50.25 2

X0.5

Time between collections of > 1 transaction 
ensures data is not copied multiple times 
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How large should the nursery be?

■ Ideally as large as possible!
– The larger the nursery, the longer the time between GC cycles
– The same amount of data is copied regardless
– Therefore the larger the nursery, the lower the GC overhead

– Large nurseries also mean very large objects are unlikely to be allocated directly into the tenured 
space

■ Disadvantages of very large nursery spaces:
– Lots of physical memory and process address space is required

• Not necessarily possible on 32bit hardware
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Putting the two together...

■ Nursery space and Tenured space are actually allocated as a single chunk of memory
– Actually possible for the boundary between the nursery and tenured spaces to move:

– However this is not recommended

■ Recommended mode is to:
– Fix the nursery size at as large a value as possible
– Allow the tenured heap size to vary according to usage

Nursery Space Tenured (old) Space

Nursery Space Tenured (old) Space

Heap Size

Nursery Heap Size

25% of -Xmx 75% of -Xmx

2.25"-Xmns = -Xmnx -Xmox
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Choosing between Generational and Non-Generational modes

■ Rate of Garbage Collection
– High rates of object “burn” point to large numbers of transitional objects, and therefore the 

application may well benefit from the use of gencon

■ Large Object Allocations?
– The allocation of very large objects adversely affects gencon unless the nursery is sufficiently large 

enough. The application may well benefit from optavgpause

■ Large heap usage variations
– The optavgpause algorithms are best suited to consistent allocation profiles
– To a certain extent this applies to gencon as well
– However, gencon may be better suited

■ Rule of thumb: if GC overhead is > 10%, you’ve most likely chosen the wrong one
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Migrating from other GC modes

■ Other garbage collection modes do not have a nursery heap
– Maximum heap size (-Xmx) is tenured heap only

■ When migrating to generational it can be required to increase the maximum heap size
– Non-generational: -Xmx1024M gives 1G tenured heap
– Generational: -Xmx1024M gives 64M nursery and 960M tenured

■ As some of the nursery is survivor space, there is a net reduction in available Java heap
– “Tilt Ratio” determines how much is “lost”

■ Recommended starting point is to set the tenured heap to the previous maximum heap size:
– ie. -Xmos = -Xms and -Xmox = -Xmx

■ And allocate the nursery and an additional heap space

■ This means there is a net increase in memory usage when moving to generational
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Example of Generational vs Non-Generational
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Monitoring GC activity

■ Use of Verbose GC logging
–  only data that is required for GC performance tuning
–  Graph Verbose GC output using GC and Memory Visualizer (GCMV) from ISA

■  Activated using command line options

-verbose:gc
-Xverbosegclog:[DIR_PATH][FILE_NAME] 
-Xverbosegclog:[DIR_PATH][FILE_NAME],X,Y 

– where: 

[DIR_PATH] is the directory where the file should be written 
[FILE_NAME] is the name of the file to write the logging to 
X is the number of files to 
Y is the number of GC cycles a file should contain

■  Performance Cost:
–  (very) basic testing shows a 1% overhead for GC duration of 200ms
–  eg. if application GC overhead is 5%, it would become 5.05%
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Rate of garbage collection

■ Gencon could handle a higher “rate of garbage collection”

■ Gencon had a smaller percentage of time in garbage collection

■ Gencon had a shorter maximum pause time

optavgpause gencon
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Rate of garbage collection

■ Gencon provides less frequent long Garbage Collection cycles

■ Gencon provides a shorter longest Garbage Collection cycle

optavgpause gencon
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Questions?
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