
1

Inside IBM Java7

Neil Masson
Java Service Technical Lead
IBM

2

Please Note

IBM's statements regarding its plans, directions, and intent are subject to change
or withdrawal at IBM's sole discretion.

Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any material, code or
functionality. Information about potential future products may not be incorporated
into any contract. The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance
that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user's job stream,
the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here.

3

3

Agenda – Inside IBM Java 7

What is it?
– High level goals

Base feature details
– JSR 334 – Small language enhancements (Project Coin)

– JSR 203 – More new I/O APIs for the Java platform (NIO.2)

– JSR 292 – invokedynamic

– JSR 166y – concurrency and collections updates

Smaller features (TLS 1.2, UNICODE 6.0...)

 IBM feature details
– Performance & platform exploitation – z196, POWER 7, ...

– Garbage Collector updates & new policy - “balanced”

– Technology Evaluation: WebSphere Real Time

– Serviceability improvements & Tools overview

Questions?

4

4

Availability of Java7

WAS 8.0

– IBM enhancements only

WAS 8.5

– Language features

– Not the default

5

5

What is Java 7? The themes

 Major Java platform release, touching on all aspects of the
language and JVM. From the draft JSR document (*), the goals:

– Compatibility - “Any program running on a previous release of the

platform must also run unchanged on an implementation of Java SE 7”

– Productivity - “...promote best coding practices and reduce boilerplate...

minimal learning curve...”

– Performance - “...new concurrency APIs... enable I/O-intensive

applications by introducing a true asynchronous I/O API..”

– Universality - “...accelerate the performance of dynamic languages on the

Java Virtual Machine.”

– Integration - “Java SE 7 will include a new, flexible filesystem API as part

of JSR 203...”

(*) Available from jcp.org

6

6

New Language Constructs – Project Coin

It's a “bunch of small change(s)”.
Strings in switch

 switch(myString) {

case “one”: <do something>; break;
case “red”: <do something else>; break;
default: <do something generic>;

 }

Improved Type Inference for Generic Instance
Creation (diamond)

Map<String,MyType> foo = new Map<String,MyType>();

Becomes:

Map<String,MyType> foo = new Map<>();

7

7

Project Coin continued...

An omnibus proposal for better integral literals

– Allow binary literals (0b10011010)

– Allow underscores in numbers to help visual blocking
(34_409_066)

Safe Varargs Method Invocation

– Generic types and arrays don't play well together

– Moves warnings to method declaration, rather than on each user.
Reduces unavoidable warnings.

– Use @SafeVarargs annotation

8

8

Project Coin – Multi-Catch

Developers often want to catch 2 exceptions the same
way, but can't in Java 6:

try {
…

} catch(ClassNotFoundException a) {
 handle(a);
} catch(NoSuchMethodException b) {
 handle(b);
}

 The following now works

try {
…

} catch(ClassNotFoundException|NoSuchMethodException a)
{

 handle(a);
}

9

9

Coin – Automatic Resource Management

try-with-resources
Closing resources is hard.
Classes implement AutoCloseable

Idea: Get the compiler to help, and define an interface on
resources which know how to tidy up automatically.

 try(InputStream inFile = new FileInputStream(aFileName);
 OutputStream outFile = new FileOutputStream(aFileName)) {

 byte[] buf = new byte[BUF_SIZE];

 int readBytes;

 while ((readBytes = inFile.read(buf)) >= 0)

 outFile.write(buf, 0, readBytes);

 }

10

10

NIO.2 – More new I/O APIs for Java (JSR 203)
Goal: Enable Java programmers to unlock the more powerful

I/O abstractions.

Asynchronous I/O

– Enable significant control over how I/O operations are handled,
enabling better scaling.

– Socket & file classes available.

– 2 approaches to completion notification

• java.util.concurrent.Future

• CompletionHandler interface (completed() & failed() calls).

– Flexible thread pooling strategies, including custom ones.

11

11

NIO.2 – New filesystem API

 Address long-standing usability issues & boilerplate

– User-level modelling of more file system concepts like symlinks

– File attributes modelled to represent FS-specific attributes (eg: owner,
permissions...)

– DirectoryStream iterates through directories

• Scales very well, using less resources.

• Allows glob, regex or custom filtering.

– Recursive walks now provided, modelled on Visitor pattern.

 Model entirely artificial file systems much like Windows® Explorer

extensions

 File Change Notification

– Improves performance of apps that currently poll to observe changes.

12

12

Directory Visit - example

Files.walkFileTree(myPath, new SimpleFileVisitor<Path>() {

 public FileVisitResult visitFile(Path file,

 BasicFileAttributes attrs) {

 try {

 file.doWhatIWanted();

 } catch (IOException exc) {

 // failed to do op, do error handling here

 }

 return FileVisitResult.CONTINUE;

 }

}
);

13

13

java.util.concurrent updates

As multicore becomes more prevalent, data structures and
algorithms to match are key.

Major new abstraction: Fork/Join framework

– Very good at 'divide and conquer' problems

– Specific model for parallel computation acceleration, significantly
more efficient than normal Thread or Executor -base
synchronization models.

– Implements work stealing for lopsided work breakdowns

Other enhancements

– TransferQueue – model producer/consumer queues efficiently

– Phaser – very flexible synchronization barrier

14

14

JSR 292 - invokedynamic

The JVM managed runtime is becoming home to more
languages (eg: jruby, jython, fan, clojure, etc..) but is missing
some of the fundamentals that help make those languages
go fast.

JSR 292 decouples method lookup and method dispatch

– Get away from being purely Java (the language) centric.

Approach: Introduce a new bytecode that executes a given
method directly, and provides the ability at runtime to rewire
what method that is.

– Include a model for building up mutators (add a parameter, drop a
parameter, etc..)

– Ensure the JIT can efficiently exploit these constructs to ensure
efficient code generation.

15

15

Smaller Items

Classloader changes

– Enable parallel classloading capability via new “safe” API.

– URLClassLoader gains a close() method.

 I18N - Unicode 6.0, Locale enhancement, Separate user locale and user-

interface locale

TLS 1.2 – Security updates.

JDBC 4.1 – ARM awareness.

Client (UI) updates

– Nimbus look-and-feel for Swing

– Swing JLayer component

– Translucent / non-rectangular windows (Java6_u10)

– Easy mixing of AWT and Swing components (Java6_u12)

– XRender support

Update the XML stack

16

16

IBM-Unique Updates and Improvements

17

17

Performance
 “4 out of 5 publishes prefer J9”

– http://www.spec.org/jbb2005/results/res2010q4/

– 88% of SPECjbb2005 publishes in last year with J9

• 94 with J9, 9 with HotSpot, 5 with Jrockit

 POWER7 Exploitation
– New prefetching capabilities

– Extended divide instructions

– Conversion between integer and float

– Bit permutation and popcount instructions

– BCD assist - Exploited through Java BigDecimal

 System zEnterprise 196 Exploitation
– 70+ new instructions

• High-word facility

• Interlock-update facility

• Non-destructive operands

• Conditional load/store

– 93% Aggregate improvement

• 14% Java 6.0.1 improvement

• 70% Hardware improvement

z / O S C P U I n t e n s i v e J a v a
W o r k l o a d

0

5 0

1 0 0

1 5 0

z10 J6 SR9

z196 J6 R2.6

z196 J6 SR9

P7 1.6X faster than Nehalem EX
(8 sockets)

3321826

5210501

0
1000000
2000000
3000000
4000000
5000000
6000000

Nehalem EX POWER7

http://www.spec.org/jbb2005/results/res2010q4/

18

GC policies since IBM Java 5

Time

Thread 1

Thread 2

Thread 3

Thread n

GC
Java

-Xgcpolicy:optthruput (and –Xgcpolicy:subpool)

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

How do the policies compare?

19

GC policies since IBM Java 5

Time

GC
Java

Concurrent
Tracing

-Xgcpolicy:optavgpause

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

How do the policies compare?

20

GC policies since IBM Java 5

Time

Global GC
Java

Concurrent
Tracing

Scavenge GC

-Xgcpolicy:gencon

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

How do the policies compare? DEFAULT
in Java 7

21

21

Next-Gen Hardware and Software
Challenges

 Meet customer needs for scaling
garbage collection technology on
large heaps

 Provide strong adaptive performance without expert advice
– Flexible and adaptive behavior to provide a good first impression
– Every tuning option increases complexity by an order of magnitude

Heap Size

P
au

se
 T

im
e cu

rre
nt

desired

Time

P
au

se
 T

im
e

current

desired

Maintain and increase technological competitive edge through
innovation

– Address new developments in industry quickly

 Showcase hardware capabilities
through exploitation of platform
facilities

22

22

-Xgcpolicy:balanced
 Incrementally collect areas of the heap that meet our needs – Partial Garbage

Collect (PGC)
– Reduced pause times
– Freeing up memory

 Heap “collection set” selection based on best ROI (free memory) factors
– e.g. Recently allocated objects, areas that reduce fragmentation

 Various technologies applied
– Copy Forward (default)

• High level of object mobility (similar to gencon GC policy)
– Global Mark Phase

• Keeps remsets current

Heap

Newly Allocated Newly AllocatedFragmented

Heap areas selected for GC
“Collection Set”

23

23

-Xgcpolicy:balanced Specifics

Suggested deployment scenario(s)

– Larger (>4GB) heaps.

– Frequent global garbage collections.

– Excessive time spent in global compaction.

– Relatively frequent allocation of large (>1MB) arrays.

Fully supported on all IBM Java 7 64 bit platforms

– First class citizen with other existing GC policies.

We encourage use of the policy and welcome feedback!

– The opportunity exists to work with the dev team.

24

24

Garbage Collection Improvements

 -Xgcpolicy:gencon is now the default

– Provides a better out of the box performance for a most applications.

– Easily switch back to the old default with -Xgcpolicy:optthruput.

 Object header size reduction & compressed references

– Object headers are 4-16 bytes depending on object type and object reference size (32bit, 64bit
compressed reference or 64bit).

– “small 64 bit” (eg: 4-20GB) now have a 32-bit like footprint (new in a Java 6 SR).

– Reduces garbage collection frequency and provides better object locality.

 Scalability improvements to all garbage collection policies on large n-way machines (#CPU >

64)

– Decreases the time spent in garbage collections pauses.

 Scalability improvements to allocation mechanism for highly parallel applications

– -Xgcpolicy:subpool is now an alias for -Xgcpolicy:optthruput.

 New format for verbose:gc output

– Event based instead of summary based.

– Provides more detailed information for easier analysis.

25

25

Try Out WebSphere Real Time (WRT)

WebSphere Real Time is a Java Runtime built with J9
technology that provides consistent performance

– Incremental GC means consistently short (3ms) GC pause times

– JIT compilations cannot block application threads

– Also a Hard Real Time flavor that runs on Real-Time Linux® (e.g.
RHEL MRG, Novell SLERT)

 IBM Java 7 includes an evaluation version of WRT-V3

– New pause time target option lets you configure GC pause times

– Throughput performance improvements

– 32- and 64-bit Linux on x86, 32- and 64-bit AIX® on POWER®

Just add -Xgcpolicy:metronome to your Java 7 command
line to try it out!

26

26

GC Pause Times: gencon and metronome

~5ms ~8ms

10ms – 14 ms

70ms

Gencon pause times

2.8ms - 3.2ms

Metronome Pause Times (Target=3ms)

Metronome Pause Times (Target=6ms)

Metronome Pause Times (Target=10ms)

5.8ms - 6.2ms

9.8ms - 10.2ms

Most GC policies have
pause times ranging
upwards of 10 – 100 ms

Metronome controls pause
times to as short as 3ms

Throughput impact, varies
by application

27

27

Consumability and RAS Enhancements

 -Xdump

– Native stack traces in javacore

– Environment variables and ULIMITs in javacore

– Native memory usage counters in javacore and from core dumps
via DTFJ

– Multi-part TDUMPs on z/OS® 64 bit systems

 -Xtrace

– Tracepoints can include Java stacks (jstacktrace)

 -Xlog

– Messages go to the Event log on Windows, syslog on Linux, errlog
or syslog on AIX, MVS console on z/OS.

28

28

Native memory usage counters
NATIVEMEMINFO subcomponent dump routine
=======================================

JRE: 555,698,264 bytes / 1208 allocations
|
+--VM: 552,977,664 bytes / 856 allocations
| |
| +--Classes: 1,949,664 bytes / 92 allocations
| |
| +--Memory Manager (GC): 547,705,848 bytes / 146 allocations
| | |
| | +--Java Heap: 536,875,008 bytes / 1 allocation
| | |
| | +--Other: 10,830,840 bytes / 145 allocations
| |
| +--Threads: 2,660,804 bytes / 104 allocations
| | |
| | +--Java Stack: 64,944 bytes / 9 allocations
| | |
| | +--Native Stack: 2,523,136 bytes / 11 allocations
| | |
| | +--Other: 72,724 bytes / 84 allocations
| |
| +--Trace: 92,464 bytes / 208 allocations
| |

29

29

Example JVM message in Windows Event
log

30

Garbage Collection and Memory Visualizer
(GCMV)

 Tool to analyze Java verbose GC logs

 Graphs Recommendations use heuristics to guide
you towards issues that may be limiting
performance.

 Show garbage collection and Java heap statistics
over time.

 Not only for memory errors, very good for
performance tuning.

Diagnostics Collector

 At JVM start it runs a diagnostic configuration check

 Runs as a separate process when the JVM detects a ‘dump event’
– GPF
– Java heap OutOfMemoryError
– Unexpected signal received
– (optionally) JVM start, JVM stop

 Knows all possible dump locations and searches to gather all dumps into a single zip file

 Collects system dumps, Java dumps, heap dumps, verbose GC logs

 If system dump found jextract runs automatically

 Requires IBM SDK for Java version 5.0 or above

31

Memory Analyzer

 Eclipse project for analyzing heap dumps and
identifying memory leaks from JVMs

 Works with IBM system dumps, heapdumps and Sun
HPROF binary dumps

 Provides memory leak detection and footprint
analysis
 Objects by Class, Dominator Tree Analysis, Path

to GC Roots, Dominator Tree by Class Loader

 Provides SQL like object query language (OQL)

 Provides extension points to write analysis plugins

Health Center
 Live monitoring tool with very low overhead

 Understand how your application is behaving

 It provides access to information about method
profiling, garbage collection, class loading, locking
and environment data

 Diagnose potential problems, with
recommendations

 Works at the JVM level – no domain-specific (e.g.
J2EE) information

 Suitable for all Java applications

32

32

Agenda – Inside IBM Java 7

What is it?
– High level goals

Base feature details
– JSR 334 – Small language enhancements (Project Coin)

– JSR 203 – More new I/O APIs for the Java platform (NIO.2)

– JSR 292 – invokedynamic

– JSR 166y – concurrency and collections updates

Smaller features (TLS 1.2, UNICODE 6.0...)

 IBM feature details
– Performance & platform exploitation – z196, POWER 7, ...

– Garbage Collector updates & new policy - “balanced”

– Technology Evaluation: WebSphere Real Time

– Serviceability improvements & Tools overview

Questions?

33

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, ibm.com are trademarks or registered trademarks
of International Business Machines Corp., registered in many

jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM

trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

Windows is a registered trademark of Microsoft Corporation in the
United States and other countries.

The registered trademark Linux® is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark

on a world-wide basis.

Copyright and Trademarks

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

