
© 2011, 2012 IBM Corporation

1

Understanding, Using, and Debugging Java
Reference Objects

Jonathan Lawrence, IBM

© 2011, 2012 IBM Corporation

2

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED
IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

© 2011, 2012 IBM Corporation

3

Introduction to the speaker

■ Many years experience Java development
– IBM CICS and Java technical consultant
– WAS & CICS integration using Java
– IBM WebSphere sMash PHP implementation
– CICS Dynamic Scripting
– IBM Memory Analyzer

■ Recent work focus:
– IBM Monitoring and Diagnostic Tools for Java
– Eclipse Memory Analyzer (MAT) project

■ My contact information:
– Contact me through the Java Technology Community on

developerWorks (JonathanPLawrence).

© 2011, 2012 IBM Corporation

4

Understanding, Using & Debugging Java References

 Some history , visiting finalizers, some basics about GC

 The principles of Java references

 Simple guidelines to usage – do’s and don'ts etc.

 Using Memory Analyzer to help resolve related problems

 Wrap-up - caveat emptor , your mileage may vary, here be dragons...

© 2011, 2012 IBM Corporation

5

First, some history

 Way back, in the dawn of Java history, it became evident that there was
a real need to know when an object was going to be garbage collected...

And so was born the idea of a “finalizer”

Oh Dear!

© 2011, 2012 IBM Corporation

6

Finalizers – good idea, fundamental flaws...

Somehow the idea of “tell me when an object has been collected”

Turned into:

“tell the object itself that it is eligible to be collected”

Oh Dear!

© 2011, 2012 IBM Corporation

7

Why are finalizers bad for your health?

To answer this question we need to look at the fundamentals of an object
oriented, garbage collected programming environment

At its simplest, garbage collection scans the heap to find and remove
objects that cannot be reached from following external “root” references

Think of it a bit like a combination of a banana tree, gravity and a
monkey...

+ + = GC

© 2011, 2012 IBM Corporation

8

© 2011, 2012 IBM Corporation

9

© 2011, 2012 IBM Corporation

10

That was Garbage Collection at its simplest – but let’s recap

GC visits each Root object and follows all references to other objects.

Each newly visited object is marked and it’s object references are followed

Any object not marked is unreachable and is removed

Lets add finalizers…

See – simple…

© 2011, 2012 IBM Corporation

11

GC with finalizers

Any object not marked but eligible for finalization is marked and added
to the finalization queue. All of its references are visited and marked

GC visits each Root object and follows all references to other objects.

Each newly visited object is marked and it’s object references are followed

Any object not marked is unreachable and is removed

Oh Dear!

© 2011, 2012 IBM Corporation

Any object not marked but eligible for finalization is marked and added
to the finalization queue. All of its references are visited and marked

Finalizer Q

GC: collected 0

© 2011, 2012 IBM Corporation

Any object not marked but eligible for finalization is marked and added
to the finalization queue. All of its references are visited and marked

Finalizer Q

GC: collected 0

Finalizer runs

GC: collected 2

© 2011, 2012 IBM Corporation

That looked easy - using finalizers just delays
the object collection. Is that it?

© 2011, 2012 IBM Corporation

Finalizer Q

GC: collected 0

© 2011, 2012 IBM Corporation

Finalizer Q

GC: collected 0

Finalizer runs

GC: collected 1

© 2011, 2012 IBM Corporation

Finalizer Q

GC: collected 0

Finalizer runs

GC: collected 1

© 2011, 2012 IBM Corporation

Finalizer Q

GC: collected 0

Finalizer runs

GC: collected 1

Finalizer runs

GC: collected 1

Finalizer runs

GC: collected 1

Finalizer runs

GC: collected 1

Finalizer runs

GC: collected 1

© 2011, 2012 IBM Corporation

Finalizers are bad:

Used incorrectly they can cause Out of Memory conditions:
Inappropriate linkages between objects with finalizers
finalizer methods blocking when executed
finalizer methods taking too long to execute.

By the way:

The finalizer contract with the JVM says

“The Java programming language does not guarantee which
thread will invoke the finalize method”

In fact the JVM doesn’t guarantee to run finalizers ever.

Convinced yet?

© 2011, 2012 IBM Corporation

Onwards to Java References

The Java Reference API is intended to provide a mechanism to
replace finalizers, and give slightly improved memory management
facilities

© 2011, 2012 IBM Corporation

Introducing Java Reference Objects
■ Introduced in Java SE v1.2

package java.lang.ref :
Reference<T>

PhantomReference<T>WeakReference<T>SoftReference<T>

ReferenceQueue<T>

http://download.oracle.com/javase/7/docs/api/java/lang/ref/package-summary.html

package java.util :

WeakHashMap<K,V>

http://download.oracle.com/javase/7/docs/api/index.html?java/util/WeakHashMap.html

Your friend

© 2011, 2012 IBM Corporation

Concept

Reference<T> Create one
of these

To be the weak
link to this

from this

Reference r=new Reference(foo);

foo

bar

© 2011, 2012 IBM Corporation

Concept

Use one
of these

To be informed
When this

Has gone
from this

ReferenceQueue q=new ReferenceQueue();
Reference e=new Reference(foo,q);

foo

ReferenceQueue<T>

Reference<T>

© 2011, 2012 IBM Corporation

© 2011, 2012 IBM Corporation

Unlike finalizers -
You have to process the
reference q.

This doesn’t get queued
– since there is a strong
reference

© 2011, 2012 IBM Corporation

Reference Objects so far

JVM

Stack Variable

Heap Object

Reference
Object

Referent

Referent is eligible for garbage collection unless a strong (normal) reference is kept
elsewhere by the application.

Reference Object get() method returns referent unless it has been garbage collected.

A Reference Object provides a level of indirection between Java code and an object.

The encapsulated object (referent) may be garbage collected

© 2011, 2012 IBM Corporation

Reference Queues

■ A ReferenceQueue may optionally receive Reference Objects whose referents have been collected:

ReferenceQueue

ReferentReference

(empty)null <- poll()

obj <- get()

garbage collection

© 2011, 2012 IBM Corporation

Reference Queues

■ A ReferenceQueue may optionally receive Reference Objects whose referents have been collected:

ReferenceQueue

ReferentReference

(empty)null <- poll()

obj <- get() xnull <- get()

Link to referent

gone

No obj to
return

ReferenceQueue

ReferentReference

(empty)null <- poll()

obj <- get()

garbage collection

© 2011, 2012 IBM Corporation

Reference Queues

■ A ReferenceQueue may optionally receive Reference Objects whose referents have been collected:

ReferenceQueue

ReferentReference

(empty)null <- poll()

obj <- get()null <- get()

ReferenceQueue

ReferentReference

(empty)null <- poll()

obj <- get()

garbage collection

After garbage collection

ReferenceQueue

Referencenull <- get()

ref <- poll()
Reference
available on q

© 2011, 2012 IBM Corporation

Java References

That looked easy… So what’s the catch?

1. You mustn’t have a strong reference to the referent
2. Your application has to handle processing the associated

reference Q. Assuming you created one.
3. The referent is gone, gone, gone - any information you

need to deal with “end of life” processing has to be held
outside the object.

4. You must have a strong reference to the Reference if
you want to be kept informed..

5. Java scope rules are not exactly how you might think.
6. The contract between your code and the Java Reference

API is somewhat grey and foggy.
7,8,9… See rule 1

© 2011, 2012 IBM Corporation

1. You mustn’t have a strong reference to the referent

The whole point of using a Reference is not to have a strong reference
(at least in your code)

class MyConnectionReference extends WeakReference {
Socket socket;
public MyConnectionReference(Socket s,MyConnection

conn,ReferenceQueue q) {
super(conn,q);
this.socket=s;

}
}

…
private ServerSocket s=new ServerSocket();
private ReferenceQueue q=new ReferenceQueue();
private MyConnection lastConnection=null;
private List<MyConnectionReference> connections …

…

while(true) {
Socket client=s.accept();
lastConnection=buildConnection(client);
connections.add(new MyConnectionReference(client, lastConnection));

}

lastConnection
Will stay around until
the next connection

© 2011, 2012 IBM Corporation

2. Your application has to handle processing the associated reference queue.
(assuming you created one).

If you did this :

ReferenceQueue q;
new Reference(foo,q);

Then you need to do this :

Reference next=q.poll();
if(next!=null) handle(next);

Or:

while(true) {
Reference next=q.remove();
handle(next);

}

if you don’t keep up with
clearing the q: you may
run out of memory

© 2011, 2012 IBM Corporation

3 The referent is gone, gone, gone

I repeat: The referent is gone, gone, gone

any information you need to deal with “end of life” processing has to be held outside
the object.

A simple solution is to subclass the Reference Object:

class MyConnectionReference extends WeakReference {
Socket socket;
public MyConnectionReference(Socket s,MyConnection conn,ReferenceQueue q) {

super(conn,q);
this.socket=s;

}
}

MyConnectionReference ref=queue.next();
ref.socket.close(); Simples

© 2011, 2012 IBM Corporation

4. You must have a strong reference to the Reference if you want to be kept
informed..

class MyConnectionReference extends WeakReference {
Socket socket;
public MyConnectionReference(Socket s,MyConnection

conn,ReferenceQueue q) {
super(conn,q);
this.socket=s;

}
}

…
private ServerSocket s=new ServerSocket();
private ReferenceQueue q=new ReferenceQueue();
private MyConnection lastConnection=null;
private List<MyConnectionReference> connections …

…

while(true) {
Socket client=s.accept();
lastConnection=buildConnection(client);
new MyConnectionReference(client, lastConnection);

}

Not holding a ref to
MyConnectionReference
means you’ll never know
when the reference is gone

© 2011, 2012 IBM Corporation

5. Java scope rules are not exactly how you might think.

…
public void demo(String name) {

String s=“my name is “+name;

WeakReference r=new WeakReference(s);

String w=r.get();

System.out.println(w);

}

Java scoping is by lines of
code – not curly brackets

w could be null!

© 2011, 2012 IBM Corporation

6. The contract between your code & the Java Reference API is
somewhat grey and foggy.

The existence of a Garbage Collector is not part
of the JVM specification or the the Java Language

The Java runtime does provides a connection to
GC

There are rules – but exactly when you can
expect your object to get collected, or when you
can expect to be notified it has been collected – is
generally implementation specific

When or if objects get GC’d , and hence drive
Java Reference Queues - is determined by the
GC implementation and various tuning
parameters…

Don’t rely on local implementation behaviour

© 2011, 2012 IBM Corporation

Reference Object Types

Now we know a bit about the principle of Java Reference Object, why and how would we
use them?

■ Soft references:
–Safety valve to avoid OutOfMemoryError

■ WeakReference
–Maintain data/association for an object without preventing garbage collection

■ PhantomReference
–Clean up resources after garbage collection

© 2011, 2012 IBM Corporation

Soft Reference

■ The referent of a Soft reference may be garbage collected once there are no
remaining strong references to it in the application.

■ However, the garbage collector will avoid garbage collecting a soft reference if
possible (ie unless an out of memory condition would result)

■ While alive, the referent may be retrieved via the Reference’s get() method.

■ If and when collected, get() will return null, and the Reference will be placed on
the associated ReferenceQueue if any.

© 2011, 2012 IBM Corporation

Soft Reference Use Cases

■ The principal use cases for Soft References are:
– Reclaimable caches
– Safety valve for OutOfMemoryErrors

■ These are closely related as one might expect

■ Used for data which would be nice to keep, but nevertheless expendable, such as a cache
or buffer.

■ In the event that the JVM runs low on heap storage, the referent of the Soft Reference may
be garbage collected, releasing some extra storage for the application to avoid out of
memory.

■ If used for a cache, it will then need to build up its contents again.

© 2011, 2012 IBM Corporation

Weak References

■ Weak References are extremely similar to Soft References in their use and operation.

■ The only difference is that with a Weak Reference the garbage collector makes no attempt
to delay collection of the referent – it’s treated just like a “normal” object for garbage
collection.

■ Once its referent has been collected, the get() method of the WeakReference will return
null, and is placed on the associated ReferenceQueue if one was specified on its
constructor.

■ Most often used in conjunction with a ReferenceQueue to notify collection of the
WeakReference referent.

© 2011, 2012 IBM Corporation

Weak Reference Use Cases

■ In spite of the similarity with Soft References, the use cases for weak references are
actually quite different because no attempt is made to delay garbage collection of a weakly
reachable object.

■ There are 2 main use cases:
– Maintaining an association between objects which have no inherent relationship, while

still allowing them to be garbage collected once they are no longer in active use.
– Implementing a canonical map for a particular type of object.

■ The real purpose behind weak references is to be able to hold references for as long as
needed, without those references becoming the reason for holding on to them.

© 2011, 2012 IBM Corporation

Phantom References

■ Sole constructor PhantomReference(referent,queue) requires a ReferenceQueue
– Though this may be null, that would be pointless

■ PhantomReference get() method always returns null
– Referent may not be retrieved by the application

■ Physical heap storage associated with the referent is not collected until:
– Referent is eligible for collection and finalized
– PhantomReference is cleared or itself garbage collected

The API contract requires calling the clear() method on the Reference – even though the
object has been garbage collected and cannot be accessed anyway

© 2011, 2012 IBM Corporation

Phantom Reference Use Cases

■ The principal use case for Phantom References is an alternative to finalizers for cleaning
up the resources of objects which have been garbage collected.

■ Some of the pitfalls of finalizers are avoided because the referent objects are not delayed
in being garbage collected.

© 2011, 2012 IBM Corporation

Summary

■ Java References provide a degree of control over the behaviour of the garbage collector,
and an alternative to finalize() for cleaning up resources when an object is collected.

■ Soft References
– Retained for as long as possible, but reclaimed in preference to out of memory error.
– Used to release memory when needed instead of throwing OutOfMemoryError

■ Weak References
– Referents are reclaimed as normal by the Garbage Collector
– Principally used to associate objects without causing them to be retained on heap
– Used internally by WeakHashMap utility class.

■ Phantom references
– Referents cannot be retrieved via get(), reclaimed as normal
– Provide an preferable alternative to finalize() for cleaning up collected objects
– Always used with a ReferenceQueue

© 2011, 2012 IBM Corporation

Wrapup

 Java References are a better alternative to using finalizers - and have more
usecases.

 Using them for caching successfully depends on managing the size your cache.
 Unconstrained cache sizes can easily lead to poor performance profiles

 Use WeakHashMap for simple, small caches etc.

 For larger and more sophisticated usage – don’t write your own!

 Remember – in using References you are opting in to an event driven system
that is primarily implementation specific. There are no real guarantees on
compatible behaviour across JVM vendors, versions, or even configurations

© 2011, 2012 IBM Corporation

References (no pun intended)

■ IBM DeveloperWorks article by Brian Goetz on using Soft References:
– http://www.ibm.com/developerworks/java/library/j-jtp01246/index.html

■ IBM DeveloperWorks article by Brian Goetz on using the WeakHashMap:
– http://www.ibm.com/developerworks/java/library/j-jtp11225/index.html

■ A blog article on Java References by Keith D Gregory:
– http://www.kdgregory.com/index.php?page=java.refobj

■ Wikipedia article on weak references:
– http://en.wikipedia.org/wiki/Weak_reference

■ Javadoc for Package java.lang.ref (links to Reference and related classes)
– http://download.oracle.com/javase/6/docs/api/java/lang/ref/package-summary.html

■ Javadoc for WeakHashMap:
– http://download.oracle.com/javase/6/docs/api/java/util/WeakHashMap.html

© 2011, 2012 IBM Corporation

47

References

■ Get Products and Technologies:
– IBM Java Runtimes and SDKs:

• https://www.ibm.com/developerworks/java/jdk/
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/

■ Learn:
– IBM Java InfoCenter:

• http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

■ Discuss:
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

© 2011, 2012 IBM Corporation

48

Copyright and Trademarks

© IBM Corporation 2011. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and trademark
information” page at URL: www.ibm.com/legal/copytrade.shtml

	Understanding, Using, and Debugging Java Reference Objects
	Important Disclaimers
	Introduction to the speaker
	Understanding, Using & Debugging Java References
	First, some history
	Finalizers – good idea, fundamental flaws...
	Why are finalizers bad for your health?
	Slide 8
	Slide 9
	That was Garbage Collection at its simplest – but let’s recap
	GC with finalizers
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Finalizers are bad:
	Onwards to Java References
	Introducing Java Reference Objects
	Concept
	Concept
	Slide 24
	Slide 25
	Reference Objects so far
	Reference Queues
	Reference Queues
	Reference Queues
	Java References
	1. You mustn’t have a strong reference to the referent
	Slide 32
	3 The referent is gone, gone, gone
	Slide 34
	5. Java scope rules are not exactly how you might think.
	Slide 36
	Reference Object Types
	Soft Reference
	Soft Reference Use Cases
	Weak References
	Weak Reference Use Cases
	Phantom References
	Phantom Reference Use Cases
	Summary
	Wrapup
	References (no pun intended)
	References
	Copyright and Trademarks

