
© 2012 Worklight, Inc. an IBM company. All rights reserved.

Worklight Overview

Andrew Ferrier
andrew.ferrier@uk.ibm.com

matthew_perrins@uk.ibm.com

WebSphere User Group, March 2012

Matt Perrins

mailto:andrew.ferrier@uk.ibm.com

The story until now...

l Mobile apps, both pure-web-based and hybrid, are
becoming popular in the enterprise space.

l IBM's main focus in this area has been the Web 2.0
and Mobile Feature Pack for WebSphere, specifically
Dojo Mobile with HTML5/CSS3

l Now, Worklight is in the picture to round out the
picture... continuing the same technological base.

l Let's talk about Worklight...

© 2012 Worklight, Inc. an IBM company. All rights reserved.

 The mobile lifecycle

• Strong demand by LoB
• Higher expectations of user experience

with mobile apps
• Lack of best practices guidance on

how to deliver mobile applications
• More direct involvement from

users/stakeholders in design
• Native programming models are

not portable across devices.
• Highly fragmented set of mobile

devices and platforms
• Very large number of configurations

of devices, platforms, carriers, etc. to test
• Mobile landscape evolves at a much faster

pace
• More frequent releases and updates for apps

with more urgent time-to-market demands

Worklight Vision

Open platform, built around HTML5 & supporting hybrid
apps

Focus on new devices and OS’s and their unique
capabilities

Cater to high-end enterprise needs regarding app
capabilities, delivery, integration, security, scale and

management
Handle the entire lifecycle of mobile apps

4

Provide the best platform in the market for enterprises to
develop, run and manage smartphone and tablet apps

Worklight Server
Unified notifications, runtime skins, version
management, security, integration and delivery

Worklight Console
A web-based console for real-time analytics and control
of your mobile apps and infrastructure

Worklight Studio
The most complete, extensible environment with
maximum code reuse and per-device optimization

Worklight Overview

5

Worklight Runtime Components
Extensive libraries and client APIs that expose and
interface with native device functionality←

6

Worklight Architecture

7

Worklight Application Types
Native Apps

Platform-specific.
Requires unique
expertise, pricy
and long to
develop. Can
deliver higher
user experience.

Native
Application

Device APIs

10010101010111010010
10010010101110100100
11010101010100100100
10111100100110010101
01001010101010010101
01010101010101011111
10000010101010101010
01001010101010101000
11110101000111101010
01110101011111001011
01111010001011001110

Hybrid Apps -
Mixed

User augments
web code with
native language
for unique needs
and maximized
user experience.

Native Shell

 Web
Native

Device APIs

<!
DOCTY
PE html
PUBLIC
created
2003-12
</p>
</body>
</html>

100101
010101
110100
101010
101010
100100
100101
111001
001100

10

Hybrid Apps - Web

HTML5 code and
Worklight runtime
libraries packaged
within the app and
executed in a
native shell.

Native Shell

Web Code
<!DOCTYPE html
PUBLIC
<html>
<! - - created 2003-12-1
<head><title>XYZ</title
</head>
</body>
</html>

Device APIs

Web Apps

Written in HTML5
JavaScript and
CSS3. Quick and
cheap to develop,
but less powerful
than native.

Mobile Browser

Web Code
<!DOCTYPE html
PUBLIC
<html>
<! - - created 2003-12-
12 - -
<head><title>XYZ</title
>
</head>
<body>
</p>
</body>
</html>

Browser Access Downloadable Downloadable Downloadable

Browser Access Hybrid Apps - Web Hybrid Apps - Mixed Native Apps

8

Worklight Studio

• Eclipse-based IDE
• Combining native and standard web

technologies in one multiplatform app
• Environment-specific optimization
• 3rd-party libraries integration
• Device SDK integration
• Back-end connectivity utilities

Integrated Development
Environment
(Eclipse Plug-in)

Application development
using native and/or familiar
web technologies:
• HTML5
• CSS3
• JavaScript

Integrated device SDKs allow
direct access from within the
IDE to emulators and code
debugging utilities

Worklight Studio

9

Single Shared Codebase

10

Project structure separates
device-specific and device-
independent “common”
code.

Build procedure assembles
and deploys chosen
device-specific variants

11

Worklight Server

• Distribution of mobile web apps
• Enterprise connectivity:

• Secure client/server connectivity
• Direct access to enterprise back-end data and transaction capabilities
• Authentication enforcement

• Client control:
• Application version management and remote disabling
• Direct update of application code

• Unified Push Notifications
• Aggregation of usage statistics

Direct Update – On-device Logic

Web resources packaged
with app to ensure initial

offline availability
Web resources transferred

to app's cache storage
App checks for updates

• On startup
• On foreground

Updated web resources
downloaded when necessary

12

Secure back-end integration

XML-based declarative
specification

Multi-source data mashups

Eclipse plug-in supporting
auto-complete and validation

Simplified adapter testing

Server-side debugging

Web services and JDBC
integration

Access to session data and
user properties

Enterprise Connectivity: Adapters

13

Direct Update - Distribution

14

Native Shell

Web
Code

<!DOCTYPE
html PUBLIC
<html>
<! - - created
2011-12-1
<head><title>X
YZ</title
</head>
</body>
</html>

V1.
0

Worklight
Studio

Application
Stores (*)

Worklight Server

Develop:
• Native app
• Web

resources

Web
Resources

Native + Web
Resources

Maintains recent web
resources for native apps V1.0
and V1.1

Download

Native Shell

Web
Code

<!DOCTYPE
html PUBLIC
<html>
<! - - created
2011-12-1
<head><title>X
YZ</title
</head>
</body>
</html>

V1.
1

(*) During development cycles, testers automatically get recent web resources via
internal distribution mechanisms and not application stores.

Updated Web
Resources for V1.0

Updated Web
Resources for V1.1

Unified Push Notifications

Back-end
System
Back-end
System

Back-end
System
Back-end
System

Polling
Adapters

Message-
based

Adapters

Unified
Push API

Notificatio
n State

Database

User-
Device

Database

iOS
Dispatcher

Android
Dispatcher

BlackBerry
Dispatcher

Windows
Phone

Dispatcher

SMS
Dispatcher

Apple
Push

Servers
(APN)

Google
Push

Servers
(C2DM)

RIM Push
Servers

Microsoft
Push

Servers

SMS/MMS
BrokersAdministrative Console

Worklight
Client-side

Push
Services

Worklight
Client-side

Push
Services

Worklight
Client-side

Push
Services

Worklight
Client-side

Push
Services

iOS
Push API

Android
Push API

BlackBerry
Push API

Windows
Push API

Broker API

15

16

Device Runtime Components

• Framework for server integration:
• Secure server connectivity
• Authentication
• Remote disable & notification
• Push registration
• Event reporting for analytics & audit

• Cross-platform compatibility layer
• Runtime Skins
• Secure encrypted storage

17

Worklight Console
• Application Version Management
• Push management
• Usage reports and analytics
• Reports of custom application events
• Configurable audit log
• Administrative dashboards for:

• Deployed applications
• Installed adapters
• Push notifications

• Data export to BI enterprise systems

Dynamic Control of Deployed Apps

• Centralized control of all installed applications and adapters
• Remotely disable apps by device and version
• Customize user messages

18

Push Services Management

19

Data Collection and Analytics

20

Worklight Studio
Writing Your First Application

© 2011 Worklight, Inc. All rights reserved. The information contained herein is the proprietary and confidential information of Worklight.

Development: Server + Studio

Worklight Server

Authentication

JSON Translation

Server-side
Application Code

Adapter Library

Direct Update

Mobile
Web Apps

Unified Push
Notifications

22

Studio is Eclipse-based

Server runs on Tomcat (today)
wl_start to launch

Hello Worklight Application

Create a Worklight Project

23

Right Click on the
project node and create
a new Worklight
Application

Name it HelloWorklight

24

Hello Worklight Application

Worklight Project Structure

A Worklight Project consists of the following folders:
• adapters:

• Contains the project’s adapters
• Right-click → Create Adapter to create a new one

• apps:
• Contains the project’s applications
• Right-click → Create Application to create a new

one
• bin:

• A destination folder for deliverables
• lib:

• Contains the project’s 3rd-party libraries

25

HelloWorklight - Project Structure

The default environment is called common
The common environment contains all the
resources that are shared between
environments
You can add new environments by right-
clicking application folder and choosing the
Add new environment option
• A new environment will be created.
• The new environment’s resources will have the

following relationship with the common resources:
• images - override the common images in case both

share the same name
• css – extend and/or override the common CSS files
• js - extends the common application instance JS object
• (The environment class extends the common app class)
• HTML - override the common HTML code in case both

share the same name

26

Common Environment:
• HelloWorklight.html

• The main HTML file.
• css

• HelloWorklight.css - main application’s CSS file.
• reset.css - bringing all rendering engines to one common

ground.
• images

• Default Worklight images for the common environment
• js

• HelloWorklight.js
• The main JavaScript file for the application.

• messages.js
• JSON object holding all app messages. Can be used for

localization
• Auth.js

• Application’s custom authentication mechanism implementation
Legal
• This folder should hold all legal related docs.
Application-descriptor
• Application’s meta data

27

HelloWorklight - Project Structure

HelloWorklight - Application Descriptor
An XML file to hold all the application’s meta data
Based on the W3C Widget Packaging and Configuration

28

Specify the application name,
description and author’s name to
be displayed in the Worklight
Console

HelloWorklight - Application Descriptor
An XML file to hold all the application’s meta data
Based on the W3C Widget Packaging and Configuration

29

Mobile worklightRootURL
The URL to be used as a root URL
in generated mobile applications –
iOS, Android etc.

HelloWorklight.html

30

Default application HTML template complies
with HTML5 standard markup, but any other
DOCTYPE can be specified.

During the runtime of an application, the main HTML document cannot be
replaced by another HTML document.

HelloWorklight.html

31

During the runtime of an application, the main HTML document cannot be
replaced by another HTML document.

Worklight Client framework initialization
bound to body onload event. For possible init
options see Developers Guide

HelloWorklight.html

32

This is the right place to insert your html
code

During the runtime of an application, the main HTML document cannot be
replaced by another HTML document.

HelloWorklight.js

33

The app’s main .js file contains its JavaScript portion
It has a wlCommonInit() function that will be invoked
automatically once Worklight framework initialization
finishes
You can add your application’s initialization code here
This function will be used in environment-specific
JavaScript files to have a common initialization starting
point

Building an Application

Make sure your Worklight
Server is up and running
Select an app to build and
right click on it
Click Run As
Select Build All and
Deploy
After build completes, the
application will be
available for preview in the
catalog tab of the
Worklight Console

34

Deploying Apps Using the Worklight
Console

http://{Worklight Server}/console

35

Adding a New Environment

36

• To add a new environment right-click on your

application folder and select New → Worklight

Environment

Adding a New Environment

Select the Android
phones and tablets

checkbox and click Finish

37

Adding a New Environment

Two folders will be automatically

added:

1.android folder inside the application folder

2.Android Project folder in your workspace.

IMPORTANT

•. The auto-generated Android Project folder

does not contain a copy of the code, but it

is mapped to a native folder within the

android folder of the application.

38

1

2

Review of the Android Folder Structure

The Android environment consists of the following folders:

• css – properties specified in here will override CSS files

from the common folder.

• images – Android specific images can be added here. If

an image with same filename exist in the common

folder it will be overwritten in the Android application.

• js – JavaScript that can extend (and override if required)

JavaScript code from the common folder.

39

The native folder under android

contains automatically generated

android application code that is

automatically imported into the eclipse

workspace as an Android Project.

It is not recommended to edit files

under the assets folder, as each time

the application is built they are

regenerated.

40

Review of the Android Folder Structure Cont.

Build and deploy your application on the Worklight Server

Right-click the automatically generated Android Project

and select Run As → Android Application

41

Running Your App on the Android Emulator

Congratulations, you’ve just created your first Android

application

42

Running Your App on the Android Emulator

Running Your Application On a Real Device

When an Android device is connected to the

computer via USB cable, the Eclipse ADT plug-in will

automatically recognize it and attempt to deploy

applications onto it.

More info and device drivers can be found at:

http://developer.android.com/sdk/win-usb.html

43

http://developer.android.com/sdk/win-usb.html

Development

HTML5 / CSS3

JavaScript, both on Client and Server

• For Client: optionally, a JavaScript Framework

• Dojo Mobile, JQuery Mobile, Sencha Touch

Optionally on Client

• Native code, as a PhoneGap plugin

Optionally on Server

• Java code

44

The WL Namespace – client APIs

To use Worklight API, a WL namespace is used
• WL.Client, WL.Utils, …

Exposes the API objects, methods and constants
(usually enums)
Automatically added to the app’s main HTML file
• wlcommon.js
• wlclient.js
• worklight.js
• wlfragments.js

WL Namespace is automatically available on
application initialization

45

WL.Client

WL.Client lets you perform the following types of
functions:

46

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the application.

WL.Client.init (options)
 - onSuccess
 - onFailure
 - showLogger
 - minAppWidth
 - busyOptions

WL.Client.reloadApp()

47

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the application.
• Manage authenticated sessions.

WL.Client.getUserName (realm)
WL.Client.getLoginName (realm)
WL.Client.login (realm, options)
WL.Client.logout (realm, options)
WL.Client.isUserAuthenticated
(realm)
WL.Client.getUserInfo (realm, key)
WL.Client.updateUserInfo (options)

48

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the application.
• Manage authenticated sessions.
• Obtain general app information.

WL.Client.getEnvironment ()
 WL.Environment.ADOBE_AIR
 WL.Environment.FACEBOOK
…

49

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.

WL.Client.invokeProcedure (invocationData,
options)

WL.Client.makeRequest (url, options)

50

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.

WL.Client.setUserPref (key, value, options)
WL.Client.setUserPrefs ({key1:value1, …},
options)
WL.Client.getUserPref (key)
WL.Client.removeUserPref (key, options)
WL.Client.hasUserPref (key)

51

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.
• Internationalize app texts.
• Specify environment-specific user interface behavior.

WL.App.openURL
WL.App.getDeviceLangu
age
WL.App.getDeviceLocale
WL.Client.onDock
WL.Client.onShow
WL.Client.onHide
WL.BusyIndicator
WL.TabBar
WL.SimpleDialog
WL.OptionsMenu

52

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.
• Internationalize app texts.
• Specify environment-specific user interface behavior.
• Store custom log lines for auditing and reporting purposes in

special database tables.

WL.Client.logActivity (activityType)

53

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.
• Internationalize app texts.
• Specify environment-specific user interface behavior.
• Store custom log lines for auditing and reporting purposes in

special database tables.
• Write debug lines to a logger window.

WL.Logger.debug (msg)
WL.Logger.error (msg)

54

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.
• Internationalize app texts.
• Specify environment-specific user interface behavior.
• Store custom log lines for auditing and reporting purposes in

special database tables.
• Write debug lines to a logger window.
• Dynamic page and fragments loading.

WL.Fragment.load
WL.Page.load
WL.Page.back
WL.Page.isLoaded

55

WL.Client

WL.Client lets you perform the following types of
functions:
• Initialize and reload the app.
• Manage authenticated sessions.
• Obtain general app information.
• Retrieve and update data from corporate information systems.
• Store and retrieve user preferences across sessions.
• Internationalize app texts.
• Specify environment-specific user interface behavior.
• Store custom log lines for auditing and reporting purposes in

special database tables.
• Write debug lines to a logger window.
• Dynamic page and fragments loading.
For full documentation please refer to the Developer Reference
Guide.

56

Server-Side Development

An Adapter is a transport layer
used by the Worklight Platform to
connect to various back-end
systems.

Adapters are used for:
• Retrieving information
• Performing actions

Out of the box:
• SQL Adapter
• HTTP Adapter (supports both
• REST and SOAP)

57

Information
Systems

Databases

Applications

Query
Update

data

Data/Result
as JSON

Invoke
adapter

procedure

SQL WS

Worklight

HTTP

Response

1

2 3

4

Example: Build a SQL Adapter

A Worklight SQL Adapter is designed to communicate with
any SQL data source

Both plain SQL queries or stored procedures can be used

58

Creating a Worklight SQL Adapter

Within the Worklight Studio, right click on the Worklight
Project and create a new Worklight SQL Adapter

A standard SQL Adapter
structure will be created

59

Connection can be either JNDI or data source definition
• JNDI - Java Naming and Directory Interface - providing Java

applications with a unified interface for multiple naming and
directory services.

• A JNDI name can be declared as a parameter that is
defined in a worklight.properties file. This is an
adapter’s XML file:

And these are corresponding entries in the
worklight.properties file

XML File
Connectivity Settings

60

JS File
Procedure

A procedure must be declared in the Adapter’s XML file

The adapter’s JavaScript file is used to implement the
procedure logic

IMPORTANT – The same name declared in the XML file
should be used for the procedure’s JavaScript function

There are two ways of invoking SQL statements:
• Using SQL statement query
• Using SQL Stored Procedure

61

JS File
SQL Query

To execute an SQL query
1.Prepare an SQL query using the WL.Server.createSQLStatement

API
2.WL.Server.createSQLStatement should ALWAYS be called

outside of the function
3.Add additional parameters if required
4.Use the WL.Server.invokeSQLStatement API to invoke prepared

queries
5.Return invocation result to procedure invocator (application or

another procedure)

62

1

3

4

JS File
Stored SQL Procedure

To execute a stored SQL procedure
1.Use the WL.Server.invokeSQLStoredProcedure API to execute a

stored procedure
2.Specify an SQL stored procedure name as an invocation parameter
3.Add additional parameters if required
4.Return invocation result to procedure invocator (application or

another procedure)

63

1

2
3

WL Adapters
Invocation Result

Result retrieved as a JSON
object

isSuccessful property defines
whether invocation was
successful

resultSet is an array of
returned records

64

Summary

l Worklight extends IBM's existing mobile strategy and
offerings

l Fully integrated platform for mixed web / hybrid /
native development

l More information:

l http://www.youtube.com/user/WorklightInc?feature=watch

l http://worklight.com/

http://www.youtube.com/user/WorklightInc?feature=watch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

