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Benefits and principles of test-driven development
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Benefits of test-driven development

Requires clear requirements first

Forces developer to understand the requirements before writing 
code

Forces design first, in particular interface design

Bugs are detected earlier – and hence are cheaper to resolve

Makes refactoring safer and more straightforward

Provides regression tests



IBM Software Group | IBM Software Services for Lotus

Principles of test-driven development 

Write a failing test first, then write code to make the test pass

Make small steps

Test frequently

Only write enough code to make the test pass

Tests must be automated
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Our example
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Our example portal application

A simple portal application to assist the beer festival 
attendee, which we will call “Beer-to-Beer Networking”

Consists of a single portal page and four cooperating portlets 
(or should that be “porter-lets”?)

 Ideal for a “mobile” scenario, but we will not discuss that 
aspect here
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Beer-to-Beer Networking

A calendar portlet that broadcasts a public render parameter 
(PRP) when a date is selected

A "List of Beers" portlet that shows those beers available on the 
selected day

– Select desired beers and submit

A "Book a Beer" portlet that allows those beers to be poured for 
you on the selected day

A directions portlet that shows you how to get to the venue 
serving the selected beers (or possibly home again)

– Potential integration with Google Maps etc
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Our chosen portlet: “List of Beers”

Shows nothing unless a there is a current “selected day”

 If a day is selected, shows a list of available beers

When beer names are selected and a button pressed, an event 
is generated

– Designed to be consumed by portlets such as “Book a Beer”
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How do we test a portlet?
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Portal-specific challenges

Testing portlet classes in isolation with (e.g.) JUnit is difficult

– Stubbing / mocking all platform classes is a lot of work

– Difficult to correctly monitor / drive portlet's “external contract”

• Events in and out
• Public render parameter interactions
• Behaviour on minimise / maximise etc.

– How to test that the markup generated is correct?

– What about the small bits of logic that inevitably slip into JSPs?

– How to exercise the client-side portions like

• JavaScript validations
• Ajax calls

We think you need to drive the user interface directly
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Testing by driving the user interface

UI-level tests (sometimes called “over-the-glass” tests)

– Allow all user interface elements to be exercised

• Including client-side code

– Are more intuitive for analysts, business users or non-
programmer testers to create

Tooling exists to support this approach

– Selenium / WebDriver to automatically drive a browser

– Concordion to allow “natural language” test specification



IBM Software Group | IBM Software Services for Lotus

Disadvantages of approach

Tests can take a long time to write, which discourages 
developers from writing them

– Good examples and a well-developed framework can mitigate 
this

UI-level tests can take longer to run than JUnit, which 
discourages developers from running them

– Demonstrate the benefits to developers

Complexity of test code increases with complexity of 
application

– Again, an existing framework can mitigate this

– Employ people who have done it before ;-)
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Adding the portal specifics

Need to test the portlet's “contract” with other portal 
components

– Generic “counterparty” portlets can provide a user interface that 
allow test tools to:

• Set public render parameters
• Generate events for the portlet to receive
• Check public render parameters set by the portlet
• Receive and log events generated by the portlet

Need to be able to identify user interface elements within a 
specific portlet instance

– Create organisational naming and markup structure standards

– Create a framework of helper code for text fixtures
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Creating failing tests for our portlet
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Defining the contract for our example portlet

What public render parameters will it use?

– Namespace and name

– Payload

What events will it send and receive?

– Namespace, name, data type, aliases

– Payload

User interface

– Defined by the wireframe & users
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Creating the tests for the portlet

Concordion specification

– The tests defined in “natural language”

WebDriver fixtures

– Java code to execute the tests (run as JUnit)

– A simple framework for a simple example

Other tools are available:

– Concordion: Fit/FitNesse, JUnit

– WebDriver: Watij, Windmill(?)
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Concordion

 Is “an open source tool for writing automated acceptance tests in Java” 
(from the web site)

The tests are written in an HTML file in natural language
– <p>The field “name” must contain the value “Old Peculier”</p>

The tests can be understood and even specified without programming 
knowledge, e.g. by BAs or business specialists

The tests are then “instrumented” with Concordion attributes
• <p>The field 
“<span concordion:set=”#fieldName”>name</span>” must contain the 
value 
“<span concordion:assertEquals=”getFieldValue(#fieldName)”>Old 
Peculier</span>”</p>

Concordion attributes call methods in the corresponding “fixture” Java 
class that implement the described behaviour
– e.g. openWebPage(String url), getFieldValue(String fieldName)
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WebDriver

Provides an API for driving a web browser

Supports Firefox, IE, headless browser

Now part of Selenium (originally separate)

Provides a wide range of classes & methods to navigate, locate 
items on a page etc.

Example:

public String getFieldValue(String fieldName) {
    WebDriver driver = new FirefoxDriver();
    WebElement element = 
      driver.findElement(By.name(fieldName));
    return element.getValue();
}
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Demo
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Making the tests pass
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Create the portlet

Satisfy the inter-portlet contract in the portlet's definition

– Declare supported public render parameters

– Declare supported publishing and processing events

Apply naming and structural standards required by 
organisation and by test framework

– Labels for checkboxes

– IDs (namespaced) on tags, e.g. headers

Satisfy the user interface tests, preferably one-by-one

– Correct markup to appear on page

– Required user actions made available and behaving correctly
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Demo



© 2011 IBM Corporation

®

Taking things further...



IBM Software Group | IBM Software Services for Lotus

Continuous integration

 Important part of agile development

– Usually use servers such as Hudson, CruiseControl

Will typically run:

– Static analysis tools (e.g. checkstyle, PMD)

– Standalone JUnit tests

– Code coverage tools (e.g. Cobertura)

We would like it to run our UI-level tests as well

– Requires some additional effort in deployment automation
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Deployment automation

Unlike JUnit tests of standalone classes, need to actually 
deploy to WebSphere Portal to run tests

– Will probably therefore schedule to run our tests less frequently

Need to deploy other Portal artefacts along with the portlet

– Page to host portlet

– Counter party portlets to tests events and PRPs in and out

– Wires to connect portlet and event counter parties

Can determine these requirements and generate deployment 
scripts automatically by parsing portlet.xml
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Journey-level tests

So far we have concentrated on testing a single portlet

– How do we test an entire portal application?

We can create UI tests at the level of user journeys

– Idea is to test the pages, wires and interactions between portlets

– Do not repeat testing of functionality within individual portlets

– Test the correct “flow” of the user experience

Challenges:

– Distinguishing between portlets / portlet instances on a page

• Checking correct portlets present
• Driving user actions on correct portlet

– Deploying the whole portal application for continuous integration
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Questions?


