
© 2011 IBM Corporation

®

Test-Driven Development for Portal Applications

Mark Vardy, Graham Harper
Application Architects
IBM Software Services for Lotus

IBM Software Group | IBM Software Services for Lotus

Agenda

 Introductions

Benefits and principles of test-driven development

Example application

How do we test a portlet?

Creating failing tests

Making the tests pass (a.k.a. writing the portlet)

Taking things further...

© 2011 IBM Corporation

®

Benefits and principles of test-driven development

IBM Software Group | IBM Software Services for Lotus

Benefits of test-driven development

Requires clear requirements first

Forces developer to understand the requirements before writing
code

Forces design first, in particular interface design

Bugs are detected earlier – and hence are cheaper to resolve

Makes refactoring safer and more straightforward

Provides regression tests

IBM Software Group | IBM Software Services for Lotus

Principles of test-driven development

Write a failing test first, then write code to make the test pass

Make small steps

Test frequently

Only write enough code to make the test pass

Tests must be automated

© 2011 IBM Corporation

®

Our example

IBM Software Group | IBM Software Services for Lotus

Our example portal application

A simple portal application to assist the beer festival
attendee, which we will call “Beer-to-Beer Networking”

Consists of a single portal page and four cooperating portlets
(or should that be “porter-lets”?)

 Ideal for a “mobile” scenario, but we will not discuss that
aspect here

IBM Software Group | IBM Software Services for Lotus

IBM Software Group | IBM Software Services for Lotus

Beer-to-Beer Networking

A calendar portlet that broadcasts a public render parameter
(PRP) when a date is selected

A "List of Beers" portlet that shows those beers available on the
selected day

– Select desired beers and submit

A "Book a Beer" portlet that allows those beers to be poured for
you on the selected day

A directions portlet that shows you how to get to the venue
serving the selected beers (or possibly home again)

– Potential integration with Google Maps etc

IBM Software Group | IBM Software Services for Lotus

Our chosen portlet: “List of Beers”

Shows nothing unless a there is a current “selected day”

 If a day is selected, shows a list of available beers

When beer names are selected and a button pressed, an event
is generated

– Designed to be consumed by portlets such as “Book a Beer”

© 2011 IBM Corporation

®

How do we test a portlet?

IBM Software Group | IBM Software Services for Lotus

Portal-specific challenges

Testing portlet classes in isolation with (e.g.) JUnit is difficult

– Stubbing / mocking all platform classes is a lot of work

– Difficult to correctly monitor / drive portlet's “external contract”

• Events in and out
• Public render parameter interactions
• Behaviour on minimise / maximise etc.

– How to test that the markup generated is correct?

– What about the small bits of logic that inevitably slip into JSPs?

– How to exercise the client-side portions like

• JavaScript validations
• Ajax calls

We think you need to drive the user interface directly

IBM Software Group | IBM Software Services for Lotus

Testing by driving the user interface

UI-level tests (sometimes called “over-the-glass” tests)

– Allow all user interface elements to be exercised

• Including client-side code

– Are more intuitive for analysts, business users or non-
programmer testers to create

Tooling exists to support this approach

– Selenium / WebDriver to automatically drive a browser

– Concordion to allow “natural language” test specification

IBM Software Group | IBM Software Services for Lotus

Disadvantages of approach

Tests can take a long time to write, which discourages
developers from writing them

– Good examples and a well-developed framework can mitigate
this

UI-level tests can take longer to run than JUnit, which
discourages developers from running them

– Demonstrate the benefits to developers

Complexity of test code increases with complexity of
application

– Again, an existing framework can mitigate this

– Employ people who have done it before ;-)

IBM Software Group | IBM Software Services for Lotus

Adding the portal specifics

Need to test the portlet's “contract” with other portal
components

– Generic “counterparty” portlets can provide a user interface that
allow test tools to:

• Set public render parameters
• Generate events for the portlet to receive
• Check public render parameters set by the portlet
• Receive and log events generated by the portlet

Need to be able to identify user interface elements within a
specific portlet instance

– Create organisational naming and markup structure standards

– Create a framework of helper code for text fixtures

© 2011 IBM Corporation

®

Creating failing tests for our portlet

IBM Software Group | IBM Software Services for Lotus

Defining the contract for our example portlet

What public render parameters will it use?

– Namespace and name

– Payload

What events will it send and receive?

– Namespace, name, data type, aliases

– Payload

User interface

– Defined by the wireframe & users

IBM Software Group | IBM Software Services for Lotus

Creating the tests for the portlet

Concordion specification

– The tests defined in “natural language”

WebDriver fixtures

– Java code to execute the tests (run as JUnit)

– A simple framework for a simple example

Other tools are available:

– Concordion: Fit/FitNesse, JUnit

– WebDriver: Watij, Windmill(?)

IBM Software Group | IBM Software Services for Lotus

Concordion

 Is “an open source tool for writing automated acceptance tests in Java”
(from the web site)

The tests are written in an HTML file in natural language
– <p>The field “name” must contain the value “Old Peculier”</p>

The tests can be understood and even specified without programming
knowledge, e.g. by BAs or business specialists

The tests are then “instrumented” with Concordion attributes
• <p>The field
“name” must contain the
value
“Old
Peculier”</p>

Concordion attributes call methods in the corresponding “fixture” Java
class that implement the described behaviour
– e.g. openWebPage(String url), getFieldValue(String fieldName)

IBM Software Group | IBM Software Services for Lotus

WebDriver

Provides an API for driving a web browser

Supports Firefox, IE, headless browser

Now part of Selenium (originally separate)

Provides a wide range of classes & methods to navigate, locate
items on a page etc.

Example:

public String getFieldValue(String fieldName) {
 WebDriver driver = new FirefoxDriver();
 WebElement element =
 driver.findElement(By.name(fieldName));
 return element.getValue();
}

IBM Software Group | IBM Software Services for Lotus

Demo

© 2011 IBM Corporation

®

Making the tests pass

IBM Software Group | IBM Software Services for Lotus

Create the portlet

Satisfy the inter-portlet contract in the portlet's definition

– Declare supported public render parameters

– Declare supported publishing and processing events

Apply naming and structural standards required by
organisation and by test framework

– Labels for checkboxes

– IDs (namespaced) on tags, e.g. headers

Satisfy the user interface tests, preferably one-by-one

– Correct markup to appear on page

– Required user actions made available and behaving correctly

IBM Software Group | IBM Software Services for Lotus

Demo

© 2011 IBM Corporation

®

Taking things further...

IBM Software Group | IBM Software Services for Lotus

Continuous integration

 Important part of agile development

– Usually use servers such as Hudson, CruiseControl

Will typically run:

– Static analysis tools (e.g. checkstyle, PMD)

– Standalone JUnit tests

– Code coverage tools (e.g. Cobertura)

We would like it to run our UI-level tests as well

– Requires some additional effort in deployment automation

IBM Software Group | IBM Software Services for Lotus

Deployment automation

Unlike JUnit tests of standalone classes, need to actually
deploy to WebSphere Portal to run tests

– Will probably therefore schedule to run our tests less frequently

Need to deploy other Portal artefacts along with the portlet

– Page to host portlet

– Counter party portlets to tests events and PRPs in and out

– Wires to connect portlet and event counter parties

Can determine these requirements and generate deployment
scripts automatically by parsing portlet.xml

IBM Software Group | IBM Software Services for Lotus

Journey-level tests

So far we have concentrated on testing a single portlet

– How do we test an entire portal application?

We can create UI tests at the level of user journeys

– Idea is to test the pages, wires and interactions between portlets

– Do not repeat testing of functionality within individual portlets

– Test the correct “flow” of the user experience

Challenges:

– Distinguishing between portlets / portlet instances on a page

• Checking correct portlets present
• Driving user actions on correct portlet

– Deploying the whole portal application for continuous integration

© 2011 IBM Corporation

®

Questions?

