
© 2009 IBM Corporation

JAX-WS 2.2 and JAX-RS 1.1 support in
WebSphere Application Server Version 8.0

Beta

Katherine Sanders – Staff Software Engineer, WebSphere Application Server – Web Services QoS Team, IBM Hursley
23 March 2011

2 © 2011 IBM Corporation

Agenda

■ JAX-WS 2.2
– WS-A and JAX-WS overview
– New Features for JAX-WS 2.2

■ JAX-RS 1.1
– REST and JAX-RS overview
– New Features for JAX-RS 1.1

■ SOAP vs REST

■ Summary and Resources

3 © 2011 IBM Corporation

Disclaimer

IBM’s statements regarding its plans, directions, and intent are subject to change or
withdrawal without notice at IBM’s sole discretion. Information regarding potential future
products is intended to outline our general product direction and it should not be relied on in
making a purchasing decision. The information mentioned regarding potential future products
is not a commitment, promise, or legal obligation to deliver any material, code or functionality.
Information about potential future products may not be incorporated into any contract. The
development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

4 © 2011 IBM Corporation

Agenda

■ JAX-WS 2.2
– WS-A and JAX-WS overview
– New Features for JAX-WS 2.2

■ JAX-RS 1.1
– REST and JAX-RS overview
– New Features for JAX-RS 1.1

■ SOAP vs REST

■ Summary and Resources

5 © 2011 IBM Corporation

What is WS-A 1.0?

■ Web Services Addressing (WS-A) 1.0 is a set of 3 W3C specifications:

■ Core
– Defines a transport-neutral set of abstract properties and an XML representation
– Facilitates end-to-end addressing of endpoints in messages

■ SOAP Binding
– Defines the binding of the abstract properties defined in the Core specification to SOAP

Messages

■ Metadata
– Defines how the abstract properties defined in the Core specification are described using

WSDL
– Defines how to include WSDL metadata in endpoint references (EPRs)
– Defines how WS-Policy can be used to indicate the support of WS-A by a Web service
– Defines which of the core message properties are mandatory for messages in the

various message exchange patterns defined by WSDL

■ Supersedes the earlier W3C submission specification from August, 2004

6 © 2011 IBM Corporation

What is JAX-WS?

■ Java™ API for XML-Based Web Services (JAX-WS)

■ Java Specification Request (JSR) 224, new to Java EE 5

■ Successor to the previous standard, Java API for XML based RPC (JAX-RPC)
– Still uses SOAP messages and WSDL documents to describe services
– Annotation based programming model
– Asynchronous invocations

• Enable clients to make multiple requests to provider simultaneously
• Polling or callback models

– Java ↔ WSDL mapping
• Command line tools
• Rational Application Developer

– All generated code is portable

7 © 2011 IBM Corporation

Supported Versions

Name Finalised WebSphere Version Comments

WS-A Submission Aug 2004 6.1 (internal use in
6.0 – not supported)

Split into the next 3 specifications
for the final version

WS-A 1.0 – Core May 2006 6.1

WS-A 1.0 – SOAP
Binding May 2006 6.1

WS-A 1.0 –
Metadata Sep 2007 7.0

Earlier WSDL Binding Candidate
Recommendation supported in

6.1

JAX-WS 2.0 Apr 2006 6.1 Web Services
Feature Pack No WS-A support

JAX-WS 2.1 May 2007 7.0 Supports WS-A 1.0 – Core and
SOAP Binding

JAX-WS 2.2 Dec 2009 8.0 Beta Supports WS-A 1.0 – Metadata

8 © 2011 IBM Corporation

WS-A – Message Addressing Properties

■ Message addressing properties (MAPs) are a set of well defined WS-Addressing properties
that can be represented as elements in SOAP headers and provide a standard way of
conveying information

■ E.g. The endpoint to which message replies should be directed (wsa:ReplyTo)

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:To>http://test.ibm.com:9080/Test/Service</wsa:To>
 <wsa:ReplyTo>
 <wsa:Address>http://test.com:9080/Test/Service1.Port</wsa:Address>
 </wsa:ReplyTo>
 <wsa:FaultTo>
 <wsa:Address>http://test.com:9080/Test/Service2.Port</wsa:Address>
 </wsa:FaultTo>
 <wsa:MessageID>urn:uuid:fe910bd5-b00c-47b5</wsa:MessageID>
 <wsa:Action>http://test.com:9080/Test/PortType/action</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
 </soapenv:Envelope>

9 © 2011 IBM Corporation

WS-A – Endpoint References

■ Endpoint References (EPRs) provide a standard mechanism to encapsulate information
about specific endpoints

■ EPRs can be propagated to other parties and then used to target the web service endpoint
that they represent

■ The JAX-WS 2.1 API introduced an EndpointReference class
– Subclass W3CEndpointReference represents EPRs that follow the WS-A 1.0 Core

specification
– IBM proprietary subclass SubmissionEndpointReference represents endpoint references

that follow the Submission version of the WS-A specification
– There are a number of ways to create and use them in your applications in the API

10 © 2011 IBM Corporation

JAX-WS 2.2 – Metadata in EPRs

■ Metadata will be generated by any of the JAX-WS APIs that return an EPR e.g.
BindingProvider.getEndpointReference and W3CEndpointReferenceBuilder.build

■ Used by EndpointReference.getPort, which returns a proxy configured using it

■ Metadata already generated in version 7.0 to support the WS-A 1.0 Metadata specification,
but now it will be compliant with other vendor's JAX-WS runtimes.

 <wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:test="http://service.test.ibm.com">
 <wsa:Address>http://test.ibm.com:9080/Test/Service</wsa:Address>
 <wsa:ReferenceParameters>
 <test:ID>123456789</test:ID>
 </wsa:ReferenceParameters>
 <wsa:Metadata xmlns:wsdli="http://www.w3.org/2006/01/wsdl-instance"
 wsdli:wsdlLocation="http://service.test.ibm.com
 http://test.ibm.com:9080/Test/Service.wsdl">
 <wsam:ServiceName
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 EndpointName="Port">test:Service</wsam:ServiceName>
 <wsam:InterfaceName>test:Interface</wsam:InterfaceName>
 </wsa:Metadata>
 </wsa:EndpointReference>

11 © 2011 IBM Corporation

Enabling and Configuring WS-A

Property Values Description
enabled true (default)

false
Whether WS-A headers are included
on messages

required true
false (default)

Whether to reject messages without
WS-A headers
Enforced on the client as well as the
service (new for JAX-WS 2.2)

Responses
(new for
JAX-WS

2.2)

Responses.All (default)
Responses.ANONYMOUS
Responses.NON_ANONYMOUS

Whether the service requires a
synchronous or an asynchronous
message exchange pattern.
Synchronous messaging uses an
anonymous wsa:ReplyTo
Asynchronous messaging uses a
non-anonymous wsa:ReplyTo
Only enforced on the service side

■ There are 3 properties used to enable and configure WS-A:

12 © 2011 IBM Corporation

JAX-WS 2.2 – Configuring WS-A using WSDL WS-Policy

■ Enable and configure WS-A on
a client or service by attaching
WS-Policy assertions to the
wsdl:port or wsdl:binding in the
WSDL document

■ A proxy created using a getPort
call will be configured with the
addressing requirements in the
associated WSDL

<wsp:Policy>
 <wsam:Addressing wsp:Optional="true">
 <wsp:Policy/>
 </wsam:Addressing>
</wsp:Policy>

<wsp:Policy>
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:AnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

<wsp:Policy>
 <wsam:Addressing wsp:Optional="true"> <wsp:Policy>
 <wsp:Policy> <wsam:Addressing>
 <wsam:NonAnonymousResponses/> <wsp:Policy/>
 </wsp:Policy> </wsam:Addressing>
 </wsam:Addressing> </wsp:Policy>
</wsp:Policy>

WS-A supported

WS-A
required

WS-A required
and sync only

WS-A optional
and async only

13 © 2011 IBM Corporation

@Addressing Annotation and AddressingFeature

■ JAX-WS 2.1 introduced the concept of features to configure clients during development

■ JAX-WS 2.1 also introduced the @Addressing annotation as the server-side equivalent of
the AddressingFeature

■ The responses property was added to both in JAX-WS 2.2

■ Note: There is also IBM proprietary @SubmissionAddressing annotation and
SubmissionAddressingFeature for working with the Submission WS-A specification, but they
do not have the responses attribute because message exchange patterns were not covered
in that specification

new AddressingFeature(true, true, Responses.NON_ANONYMOUS)

WS-A enabled, required and async only

new AddressingFeature(true, false, Responses.ALL)

WS-A enabled, optional, and sync or async (default)

@Addressing(enabled=true,required=false,responses=Responses.ANONYMOUS)

WS-A enabled, optional and sync only

14 © 2011 IBM Corporation

JAX-WS 2.2 – Client Side @Addressing Annotations

■ The @WebServiceRef annotation defines a reference to a web service invoked by the client

■ The @WebServiceRef annotation can be used to inject instances of JAX-WS services and
ports

■ You can now specify the Addressing annotation in combination with the WebServiceRef
annotation on the client side:

 public class MyClientApplication {
 @Addressing(enabled=true,responses=Responses.ANONYMOUS)
 @WebServiceRef(MyService.class)
 private MyPortType myPort;
 ...
 } WS-A enabled, optional and

sync only

15 © 2011 IBM Corporation

JSR 109 1.3 – Addressing Deployment Descriptor

■ JSR 109 is the Web Services for Java EE
specification

■ Support for version 1.3 was added to the
version 8.0 Beta

■ Includes configuring WS-A using
deployment descriptors on the client or
server application during the packaging
phase

■ In the service application, add the
<addressing> element to the <port-
component> element within the
<webservice-description> element:

■ In the client application, add the
<addressing> element under the <port-
component-ref> element within the
<service-ref> element

 <port-component>
 ...
 <addressing>
 <enabled>true</enabled>
 <required>true</required>
 <responses>ANONYMOUS</responses>
 </addressing>
 ...
 </port-component>

 <service-ref>
 ...
 <port-component-ref>
 ...
 <addressing>
 <enabled>true</enabled>
 </addressing>
 </port-component-ref>
 </service-ref>

16 © 2011 IBM Corporation

Policy Sets

■ Policy Sets are an IBM proprietary way for administrators to enable and configure qualities of
service (WS-Security, WS-A, WS-ReliableMessaging, WS-Transaction, SSL, HTTP, JMS)

■ Available since the Web Services Feature Pack for version 6.1

■ Both client and provider side

■ A Policy Set is
– Designed for high reuse
– Decoupled from applications
– Identified by a unique Name per Cell
– Designed for ease of management

• Import and export
• Copy and modify
• Automated scripting
• Defaults out of the box

■ There is support in Rational Application Developer to attach Policy Sets to applications (they
must be created in WebSphere Application Server first though)

17 © 2011 IBM Corporation

Creating a WS-A Policy Set – Application Policy Sets Pane

Services  Policy sets  Application policy sets

Click New
to create a
Policy Set

18 © 2011 IBM Corporation

Creating a WS-A Policy Set – Add the WS-A Policy Type

19 © 2011 IBM Corporation

Creating a WS-A Policy Set – Define the Assertions

Click the Policy
Type to configure

its settings

Select the settings you
want (required async
only in this case) and

click OK

20 © 2011 IBM Corporation

Attaching a WS-A Policy Set to a Service

Applications  Application Types  WebSphere
enterprise applications  click on the service application

 Service provider policy sets and bindings

Select the service
and then click

Attach Policy Set

Select the
Policy Set
from the

drop down
list

21 © 2011 IBM Corporation

Disabling WS-A

■ Disabling WS-A on clients prevents WS-A
headers being sent on outbound messages

■ Disabling WS-A on servers additionally
prevents processing of incoming WS-A
headers

■ You do not have to disable WS-A support
even if your application does not require it, it
does not have a negative impact on the
running of applications in most cases

■ WS-A support is disabled by default on clients
and enabled by default on services

■ Disable WS-A support by setting
enabled=false on either the @Addressing
annotation, Addressing deployment
descriptor, AddressingFeature (client only)

new AddressingFeature(false)

@Addressing(enabled=false) public class MyClientApplication {
 @Addressing(enabled=false)
 @WebServiceRef(MyService.class)
 private MyPortType myPort;
 ...
 }

 <service-ref>
 ...
 <port-component-ref>
 ...
 <addressing>
 <enabled>false</enabled>
 </addressing>
 </port-component-ref>
 </service-ref>

 <port-component>
 ...
 <addressing>
 <enabled>false</enabled>
 </addressing>
 ...
 </port-component>

22 © 2011 IBM Corporation

JAX-WS 2.2 – Configuration Precedence Hierarchy

■ Policy Set

■ The com.ibm.websphere.webservices.use.async.mep property
on the request context (client only)

■ The IBM proprietary WS-A SPI message addressing properties
on the request context (client only)

■ Deployment Descriptor

■ Annotation

■ Feature (client only)

■ WSDL WS-Policy

■ UsingAddressing WSDL element

Highest Precedence

Lowest Precedence

23 © 2011 IBM Corporation

WSDL to Java Code Generation

■ JAX-WS defines a mapping from WSDL 1.1 to Java. This mapping is used when generating
web service interfaces for clients and endpoints from a WSDL 1.1 description.

■ Generated Java code will contain @Action and @FaultAction annotations (JAX-WS 2.2)

 ...
 @Action(input = "input", output = "output", fault = {
 @FaultAction(className = Exception1.class, value = "fault1"),
 @FaultAction(className = Exception2.class, value = "fault2")
 })
 public String test(String param) throws Exception1, Exception2;

...
 <operation name="test">
 <input wsam:Action="input" message="tns:test"/>
 <output wsam:Action="output" message="tns:testResponse"/>
 <fault wsam:Action="fault1" message="tns:Exception1" name="Exception1"/>
 <fault wsam:Action="fault2" message="tns:Exception2" name="Exception2"/>
 </operation>
...

24 © 2011 IBM Corporation

Java Code to WSDL Generation

■ JAX-WS also defines a mapping from Java to WSDL 1.1. This mapping is used when
generating web service endpoints from existing Java interfaces.

■ This mapping is also used at runtime when publishing the WSDL for a service without a
packaged WSDL

■ As well as generating wsam:Action attributes on the operation child elements for @Action
and @FaultAction annotations on methods, WS-Policy is generated for @Addressing
annotations

 <binding name="TestBinding" type="tns:Test">
 <wsp:PolicyReference URI="#WSAM_Addressing_Policy"/>
 ...
 </binding>
 ...
 <wsp:Policy wsu:Id="WSAM_Addressing_Policy">
 <wsam:Addressing wsp:Optional="true">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>

@Addressing(enabled=true,required=false,responses=Responses.NON_ANONYMOUS)

25 © 2011 IBM Corporation

JAX-WS 2.2 – Published WSDL WS-Policy

■ There are 4 ways to access the WSDL document for a Web service:
1) Services > Service providers > click on the service name > WSDL document
2) Applications > Application Types > WebSphere enterprise applications > click on the

application name > Publish WSDL files > Click the WSDL zip file to download
3) HTTP GET request
4) Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request

■ We return a WSDL packaged in the application without modification
– Developers should ensure any WS-A WS-Policy matches the runtime behaviour of the

service to allow clients to be configured correctly

■ If there is no WSDL packaged in the application, one will be generated by the JAX-WS
runtime and it will contain WS-A WS-Policy matching any annotations in the Java code

– This does not take account of deployment descriptors and policy sets which could also
make the runtime behaviour differ from the published WS-Policy

■ Administrators can ensure the published WS-Policy matches runtime behaviour using Policy
Sets combined with WS-Policy Sharing

– Any existing WS-Policy is stripped out of the WSDL and new WS-Policy is generated
from the runtime configuration

26 © 2011 IBM Corporation

Policy Sharing – Service Provider Policy Sets and Bindings

■ To configure WS-Policy Sharing:
– Applications > Application Types > WebSphere enterprise applications > click on the

service application > Service provider policy sets and bindings
– Click the link in the Policy sharing column in the row with the Policy Set attached that you

want to share:

27 © 2011 IBM Corporation

Policy Sharing – The Policy Sharing Pane

■ For WSDLs obtained by using an HTTP GET request, select Exported WSDL

■ To enable WS-MetadataExchange and for WSDLs obtained by using a WS-
MetadataExchange GetMetada request, select WS-MetadataExchange request

– Optional: If you want to use message-level security, select Attach a system policy set to
the WS-MetadataExchange, then select a suitable policy set and binding

28 © 2011 IBM Corporation

Agenda

■ JAX-WS 2.2
– WS-A and JAX-WS overview
– New Features for JAX-WS 2.2

■ JAX-RS 1.1
– REST and JAX-RS overview
– New Features for JAX-RS 1.1

■ SOAP vs REST

■ Summary and Resources

29 © 2009 IBM Corporation

What is REST?

■ REpresentational State Transfer (REST)

■ Architectural style
– Roy Fielding's doctoral dissertation
– No formal specification (for architectural style)
– Specs are for HTTP and related technologies (XML, JSON, HTML, CSS, JavaScript etc)

■ Manipulate resource representations (nouns) defined at URIs with pre-defined methods
(verbs)

IBM Presentation Template Full Version

30 © 2009 IBM Corporation

What are resources?

■ Data
– Person
– Book
– Collection of books,
– Shopping cart,
– Application metadata
– Rational Team Concert defect

■ Every resource is addressable by a URI (URL)
– http://localhost:9080/mywebapp/People/Mark_Twain
– http://localhost:9080/mywebapp/Books
– http://localhost:9080/mywebapp/Books/The_Adventures_of_Tom_Sawyer

■ Every resource can be represented by one or more data formats (media types)
– XML
– JSON
– Plain Text
– Images

31 © 2009 IBM Corporation

What are media types?

■ Essentially data formats

■ “application/xml”, “text/plain”, “application/octet-stream”, “application/json”, “text/html”
– “type”/”subtype”
– “application/*”, “text/*”, “custom/*”

■ “Content-Type” HTTP header
– As request header, client sends a request with a message body; the server needs to

understand what format the data is in.
– As a response header, the server has decided what type the response is; informs the

client what format the data is in

■ “Accept” HTTP header
– Different clients can understand different types
– Content negotiation used to select the best representation for a given response when

there are multiple representations available

■ Media types can also have parameters (i.e. application/xml; charset=UTF-8)

32 © 2009 IBM Corporation

How do you manipulate resources?

■ Use HTTP methods to manipulate resource

■ To read a resource, you issue a HTTP GET client request and retrieve the resource

■ To create a resource, you could issue a HTTP POST

■ Ideas of “safe” methods (GET / HEAD; not POST, PUT, DELETE)

■ Another idea is idempotent methods (GET, PUT, DELETE; not POST)
– Browser warnings about re-submitting forms via POST

Database Action HTTP Method
Create POST (or PUT)
Read GET
Update PUT (or POST)
Delete DELETE

33 © 2009 IBM Corporation

Simple HTTP client request / server response

■ Client Request :

POST /mywebapp/People/Jane?q=123 HTTP/1.1
Host: www.example.com
Content-Type: application/xml

<?xml version=”1.0”?><data>Client request entity. This could have been binary
content.</data>

■ Server Response:

HTTP/1.1 200 OK
Date: Wed, 19 Jan 2011 17:08:12 GMT
Server: WAS
Content-Type: text/plain; charset=UTF-8

Hello World! Content of server response.

34 © 2009 IBM Corporation

What is JAX-RS?

■ Java™ API for RESTful Web Services (JAX-RS)

■ JSR-311, new to Java EE 6

■ Annotation-based approach to developing RESTful services

■ Nothing new for administrators, basically a servlet API that lives in the Web container

■ Makes servlet / web application development easier

■ Two major parts:
– Routing (finding out which code to invoke)
– Serializing/deserialzing. Turning request message bodies (entities) into Java types and

turning Java types into response message bodies.

35 © 2009 IBM Corporation

Simple JAX-RS class

 @javax.ws.rs.Path("/people")
 public class PersonCollection {
 private static String people = "Amy, Bob, Carol, David";
 @javax.ws.rs.GET
 @javax.ws.rs.Produces("text/plain")
 public String getPeople() {
 return people;
 }

 @javax.ws.rs.POST
 @javax.ws.rs.Produces("text/plain")
 @javax.ws.rs.Consumes("text/plain")
 public String getPeople(String requestEntity) {
 people += requestEntity;
 return people;
 }
 }

Root resource – class annotated with @Path.
This exposes the class at the /people path.

Resource method - method
in a root resource that is
bound to HTTP methods

using annotations: @GET,
@POST, @PUT, @DELETE

and @HEAD.

HTTP GET requests sent to
the “/people” path will be

handled by the getPeople()
resource method.

36 © 2009 IBM Corporation

How does JAX-RS route requests?

■ Routing is based on URLs and classes with their @Path values

■ http://<hostname>:<port>/<Context Root of Web App>/<servlet mapping>/<@Path value>
– http://localhost:9080/mywebapp/rest/people
– Context root defined in the EAR's application.xml deployment descriptor or set when

installing the application.
– Servlet mapping is defined in web.xml. Basically declare the JAX-RS servlet to map to a

“/<something>/*” URL. For example “/rest/*”in the URL above.

37 © 2009 IBM Corporation

More on URL targeting

 @Path("/people/{personID}")
 /* URLs like /people/1234 or /people/abcd */
 public class Person {
 @GET
 @Produces("text/plain")
 public String getPersonWithID(@PathParam("personID") String personID) {
 String somePerson = ""; /* lookup via database the information */
 return "the person as a string";
 }

 }

■ Can capture parts of the URL to identify resource (“personID”) by using the @PathParam
annotation

■ By default, captures “[ˆ/]+?”
– Basically any character up to the next /

■ {personID} could also be {personID:<Java regular expression>}
– {personID:a[^/]+?} to capture paths that start with the character “a”

38 © 2009 IBM Corporation

Sub-resource Methods

 @Path("/people")
 public class PersonCollection {
 private static String people = "Amy, Bob, Carol, David";

 @GET
 @Produces("text/plain")
 public String getPeople() {
 return people;
 }

 @GET
 @Path("{personID}") // note removed /people from previous slide
 @Produces("text/plain")
 public String getPersonWithID(@PathParam("personID") String person) {
 String somePerson = ""; /* lookup via database the information */
 return "the person as a string";
 }
 }

Sub-resource method – resource methods that
are also annotated with an @Path annotation that

further qualifies the selection of the method.

An HTTP GET request sent to the /people/{personID} path would
be handled by the getPersonWithID subresource method.

39 © 2009 IBM Corporation

Even more advanced, dynamic sub-resource locators

@Path("/people")
public class PersonCollection {
 /* notice no @GET or any other HTTP method*/
 @Path("{personID}")
 public Object getPersonWithID(@PathParam("personID") String personID) {
 if (personID.equals("1234")) {
 return new Manager();
 }
 return new Employee();
 }
}

public class Manager {
 @GET /* GET method for /people/1234 */
 public String get() { return "hello"; }
}

public class Employee {
 @GET /* GET method for /people/5678 */
 public String getTotallyDifferentMethod(){
 return "world";
 }

 @POST /* POST method for /people/5678 */
 public String uniquePostMethod(String requestEntity) { return "hi"; }
}

Sub-resource locator – methods that further resolve the resource that should
handle a given request. They have an @Path annotation like subresource

methods, but they do not have an HTTP request method annotation.

Subresource – similar to root resources, except they
are not annotated with the @Path annotation since
their path is described on the subresource locator.

Usually contain methods that are annotated with HTTP
request method designators to serve the request.

Any HTTP request to the /people/{personID} path
would be handled by the getPersonWithID

subresource locator.

An HTTP GET request to the /people/5678 path
would be handled by getTotallyDifferentMethod()

in the Employee subresource.

40 © 2009 IBM Corporation

What about those media types in JAX-RS?

■ How did it turn that String into the server response entity (the body of the response)?

■ JAX-RS has the concept of a MessageBodyReader and MessageBodyWriter.

■ Some are built-in for certain common types (byte arrays, JAXB types, Strings, etc.)

■ Custom ones can be added to the application.

@javax.ws.rs.ext.Provider
@Produces("application/json")
/* you can limit the media types for which this provider will be used */
public class MyCustomTypeWriter implements javax.ws.rs.ext.MessageBodyWriter<CustomType>

@javax.ws.rs.ext.Provider
@Consumes("text/xml")
public class MyCustomTypeReader implements javax.ws.rs.ext.MessageBodyReader<CustomType>

■ User defined ones take precedence over system provided ones

 @GET
 @Produces("text/plain")
 public String getPeopleAsText() {
 return "the people as a string";
 }

41 © 2009 IBM Corporation

String MessageBodyWriter

 @Provider
 public class StringProvider implements MessageBodyWriter<String> {
 public long getSize(String t,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType) {
 Return -1; /* if you know the Content-Length, return it; else -1 */
 }

 public boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType) {
 return String.class == type;
 }

 public void writeTo(String t,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String, Object> responseHttpHeaders,
 OutputStream entityStream) throws IOException {
 /* put String onto entityStream */
 }
 }

42 © 2009 IBM Corporation

What if I want to serve multiple media types?

■ For generic types (i.e. String, byte arrays) that just copy bytes out to OutputStream, need to
fill in the correct data for the response type chosen. Either via separate JAX-RS methods or
via code inside a single method.

■ For specific types (i.e. JAXB types, custom types) which have different MessageBodyWriters
(one for JSON and one for XML), then can re-use same method

 @GET
 @Produces("text/plain")
 public String getPeopleAsText() {
 return "the people as a string";
 }

 @GET
 @Produces("application/xml")
 public String getPeopleAsXML() {
 return
"<people><person><name>Jane</name></person><person><name>Bob</name></person></people>";
 }

 @GET
 @Produces({"application/xml", "application/json"})
 public MyJAXBType getPerson() {
 return new MyJAXBType();
 }

43 © 2009 IBM Corporation

How do the client and server agree on a response?

■ If client sends a request, how does the server know what type to send back?

■ Sometimes in the URL:
– http://www.example.com/File.xml vs. http://www.example.com/File.json
– http://www.example.com/File?format=xml vs. http://www.example.com/File?format=json

■ More advanced via HTTP Accept header. Client sends an Accept header in request:
– Accept: application/xml;q=0.5, application/json;q=1.0; text/plain;q=0.8 */*;q=0.2

• “q” parameter is quality parameter. From 0.0 to 1.0. Higher value means more
preferred.

• Wildcards (*) allow any type
• application/json, text/plain, application/xml, and then anything else

■ JAX-RS will respect Accept header

■ Other Accept* headers in Accept-Language, Accept-Charset

44 © 2009 IBM Corporation

How does JAX-RS know which message body provider to use?

■ In the end, we have:
1) Determined a media type to write as (either JSON, plain text, image, etc.).
2) We also have the type of the returned object from the JAX-RS annotated method.

■ Get all the registered MessageBodyWriters.

■ Remove any that aren't media type compatible (i.e. if we're writing as text/plain, any
MessageBodyWriter that only writes in application/xml is discarded)

■ Remove any that aren't Java type compatible. (i.e. you want to write a CustomType but the
MessageBodyWriter only writes Strings)

■ Re-order the user defined ones ahead of the system defined ones

■ Call each remaining provider's isWritable . The first one that returns true, use it.

45 © 2009 IBM Corporation

What else can I put on the response?

■ Use javax.ws.rs.core.Response object to return additional information (i.e. headers)

■ Uses builder design pattern

 @GET
 public Response getSimple() {
 return Response.ok("This would be the message body entity").build();
 }

 @GET
 public Response getMore() {
 return Response.status(299).header("X-My-Custom-Header", "value")
 .entity("The message body").type("text/plain").build();
 }

46 © 2009 IBM Corporation

How do I read the incoming client request entity?

■ Java method is allowed one non-JAX-RS annotated parameter.

■ Use MessageBodyReaders to turn incoming message body bytes into Java types

 @POST
 @Consumes("text/plain")
 public Response postSomething(String requestEntity) throws Exception {
 /* do something with the entity */
 return Response.status(201).location(new
URI("http://www.example.com/collection/1234")).build();
 }

 @PUT
 public Response totallyUnrelatedMethod(MyJAXBType requestEntity) throws Exception {
 /* do something with the entity */
 return Response.ok("Got the update”).build();
 }

47 © 2009 IBM Corporation

Is the message body the only way to pass information?

■ Other types of parameters can be passed in a HTTP request to a server by annotating
method parameters (like @PathParam on slide 37)

■ Cookies, query parameters, matrix parameters, header parameters, etc.

@GET
public Object getSomething(@QueryParam("format") String format) {
 return /* something not */ null;
}

@POST
@Consumes("text/plain")
public Response postSomething(String requestEntity,
 @HeaderParam("X-Custom-Header") int customHeader)
 throws Exception {
 /* do something with the entity */
 return Response.status(201)
 .location(new URI("http://example.com/collections/1234")).build();
}

48 © 2009 IBM Corporation

What about other types of parameters?

JAX-RS
Annotation

Example

@QueryParam(“q”) http://www.google.com/search?q=test

@HeaderParam(“Content-
Type”)

(In HTTP Headers)

@MatrixParam(“m1”) http://www.example.com/some/path;m1=abcValue

@CookieParam(“c1”) (HTTP Cookie)

@PathParam(“personID”) http://www.example.com/{personID}
http://www.example.com/abcd

@FormParam(“textBox1”) For web forms, the contents of the form are basically put together into a query encoded
string and put in the request message body (textBox1=Name%20of
%20feature&textBox2=Description&checkbox1=yes). Form param allows you to get the data
easier.

http://www.example.com/
http://www.example.com/

49 © 2009 IBM Corporation

What else can help me build RESTful services?

■ UriBuilder – Use API to “build” URIs from parts

■ @Context injected objects (fields/parameters)
– HttpHeaders – get the HTTP request headers
– UriInfo – get the current URI (i.e. base URI of web application), parses the path
– SecurityContext – get the current user of the thread
– Request – helps determine what the client wants
– Providers – gets the MessageBodyReaders/Writers available in application

 @Context
 private HttpHeaders requestHttpHeaders;

 @GET
 public String echoHeader() {
 return requestHttpHeaders.getRequestHeader("Content-Length").toString();
 }

 @POST
 public String getNameOfUser(@Context SecurityContext secContext) {
 return secContext.getUserPrincipal().getName();
 }

50 © 2009 IBM Corporation

What happens if an exception is thrown by some underlying code?

■ By default, exception propagates to container (i.e. leads to JSP error pages).

■ HTTP has concept of status codes (404 Not Found, 500 Internal Server Error)

■ Status codes are easier for programmatic clients to parse

■ In case something goes wrong in RESTful service, use ExceptionMapper:

 @Provider
 public class MyExceptionMapper implements ExceptionMapper<NullPointerException> {
 public Response toResponse(NullPointerException exception) {
 return Response.status(500)
 .entity("Whoops I forgot to check for null")
 .type("text/plain").build();
 }

 }

51 © 2009 IBM Corporation

Application configuration (1)

■ So far we've created these classes out of nowhere. How does WebSphere Application
Server know they exist?

■ Need to create a javax.ws.rs.core.Application sub-class and list relevant JAX-RS classes

■ Also need to configure the WAR file web.xml
– Add servlet definition for JAX-RS Servlet
– Pass parameter to JAX-RS Servlet for Application

 package com.example;
 public class MyApp extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(MyResource.class);
 s.add(MyProvider.class);
 return s;
 }
 }

52 © 2009 IBM Corporation

Application configuration (2) – web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>MyRESTApplication</servlet-name>
 <servlet-class>com.ibm.websphere.jaxrs.server.IBMRestServlet</servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>com.example.MyApp</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>MyRESTApplication</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
</web-app> List each possible URL

pattern, or use this /*
wild card registration

Param-name =
javax.ws.rs.Application

Param-value = the
Application subclass name

The JAX-RS runtime system
servlet

53 © 2009 IBM Corporation

New Features For JAX-RS 1.1

■ The WebSphere Application Server Feature Pack for Web 2.0 introduced JAX-RS 1.0
support

– Simultaneously released for WebSphere Application Server versions 6.1, 7.0, CE 2.0
and CE 2.1

■ The WebSphere Application Server version 8.0 Beta upgraded to JAX-RS 1.1 support:
– Feature Pack integrated into the core runtime
– Integration with Java EE 6 technologies

• Servlet 3.0
• EJB 3.1
• JCDI
• JSR 250

54 © 2009 IBM Corporation

Servlet 3.0 Integration

■ Servlet 3.0 no longer requires a web.xml file.

■ For application configuration, can create an Application subclass with @ApplicationPath
annotation to set the servlet mapping:

 package com.example;
 @ApplicationPath("/rest/")
 public class MyApp extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> s = new HashSet<Class<?>>();
 s.add(MyResource.class);
 s.add(MyProvider.class);
 return s;
 }
 }

■ Alternatively, the JAX-RS runtime will scan for and automatically add all of your JAX-RS
providers and resources to the application so no Application subclass is needed

– Just package classes in WEB-INF/classes then configure the web.xml
– Adding new resources is greatly simplified; no change to existing code is required!

55 © 2009 IBM Corporation

Servlet 3.0 Integration – V8.0 Beta web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>MyRESTApplication</servlet-name>
 <servlet-class>com.example.MyApp</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>MyRESTApplication</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
</web-app> Can still list each possible

URL pattern, or use /* wild
card registration

The Application subclass name
can be supplied as the value of
the servlet-class element within

the servlet definition so no
parameter is required

56 © 2009 IBM Corporation

EJB 3.1 Integration

■ If you have enterprise JavaBeans (EJB) applications, you can expose a RESTful interface to
the enterprise bean using JAX-RS

– You keep the EJB functionality including transaction support, injection of Java EE
components and resources, and other EJB session bean capabilities.

– With EJB 3.1 you now have the option of exposing a local view of an enterprise bean
without an explicit EJB local interface. Instead, the enterprise bean has a no-interface
client view that is based on the public methods of your bean class.

 package com.example;
 @Path("/hello/{name}")
 @Singleton
 public class HelloWorldResource {
 @EJB
 Nickname nickname;
 @GET
 @Produces("text/plain")
 public String getResourceRepresentation(@PathParam("name") String name) {
 return "Hello " + name + ", aka " + nickname;
 }
 }

Note the EJB annotations (in bold)
used with JAX-RS annotations

57 © 2009 IBM Corporation

JCDI Integration

■ Java Contexts and Dependency Injection (JCDI) is a new Java EE 6 feature

■ It can change the programming model to make applications easier to develop while
increasing maintainability

■ JAX-RS developers can now use JCDI features, such as @javax.inject.Inject support, in root
resource and provider classes

 package com.example;
 @Path("/hello/{name}")
 public class HelloWorldResource {
 @Inject
 private DatabaseAdapter dbAdapter;
 @GET
 @Produces("text/plain")
 public String getResourceRepresentation(@PathParam("name") String name) {
 return "Hello " + name + ", aka " + dbAdapter.getNicknameFor(name);
 }
 }

Note the JCDI @Inject annotation
used with JAX-RS annotations

58 © 2009 IBM Corporation

JSR 250 Integration

■ Secure JAX-RS resources using annotations for security supported by JSR 250 (Common
Annotations for the Java Platform)

■ Use the following annotations to add authorization semantics to JAX-RS resources:
– @PermitAll - specifies that all security roles are permitted to access your JAX-RS

resources
– @DenyAll - specifies that no security roles are permitted to access your JAX-RS

resources
– @RolesAllowed - specifies the security roles that are permitted to access your JAX-RS

resources
 package com.example;
 @Path("/hello/{name}")
 public class HelloWorldResource {
 @Inject
 private DatabaseAdapter dbAdapter;
 /* hello world can now delete! */
 @DELETE
 @RolesAllowed("admin")
 public String delUserByName(@PathParam("name") String name) {
 dbAdapter.delete(name);
 }
 }

Note the JSR 250 @RolesAllowed
annotation used with JAX-RS annotations

59 © 2011 IBM Corporation

Agenda

■ JAX-WS 2.2
– WS-A and JAX-WS overview
– New Features for JAX-WS 2.2

■ JAX-RS 1.1
– REST and JAX-RS overview
– New Features for JAX-RS 1.1

■ SOAP vs REST

■ Summary and Resources

60 © 2009 IBM Corporation

SOAP vs REST

■ REST:
– Only supports HTTP transport
– Re-use web development knowledge and technologies
– Easier for “last leg” kinds of clients (user interfaces, browsers, mobile devices, etc.)
– Need to handle quality of service issues in your code
– Use for human users so they can respond to errors

■ SOAP:
– Transport protocol neutral e.g. can use over JMS
– More mature technology
– Strong interfaces, provable correctness, and management and migration of service

interfaces
– WSDL makes it possible to dynamically generate and validate code – speeds up

development using graphical tools such as Rational Application Developer
– Use for application integration without human supervision

■ Use the best tool for the job, a hybrid may be sensible

61 © 2011 IBM Corporation

SOAP vs REST – Qualities of Service

■ Reliable Messaging
– REST applications can achieve a level of reliability by ensuring that:

• Operations always send a response and are idempotent
• Coding the application to retry the operation if it fails to receive a response

– Otherwise WS-ReliableMessaging is needed

■ Transactions
– REST applications can be coded to:

• Store the resources in a backend transactional system such as a database
• Expose these transactions as resources themselves that are available to clients

– The key is that the backend consists of a single transactional system
– WS-Transaction specifications are needed for global/distributed transactions in order to

coordinate transactions across a number of backend systems

■ Security
– REST (and SOAP) applications can achieve point-to-point security using TLS/SSL
– Can also modify applications to use XML-ENC / XML-SIG directly for XML media types
– WS-Security is really need for

• End-to-end security if the intermediary is not trusted
• Alternative transport bindings, HTTPS not available over JMS
• Security tokens to convey information about the user to the service

62 © 2011 IBM Corporation

Agenda

■ JAX-WS 2.2
– WS-A and JAX-WS overview
– New Features for JAX-WS 2.2

■ JAX-RS 1.1
– REST and JAX-RS overview
– New Features for JAX-RS 1.1

■ SOAP vs REST

■ Summary and Resources

63 © 2011 IBM Corporation

Summary

■ WebSphere Application Server V8.0 Beta adds support for JAX-WS 2.2 and JAX-RS 1.1

■ JAX-WS 2.2 finishes support for WS-A 1.0 by incorporating the Metadata specification

■ New features for WS-A:
– Web service metadata in EPRs
– New responses property on AddressingFeature and @Addressing annotations
– Client side @Addressing annotations
– Required property on AddressingFeature and @Addressing annotations also enforced

on the client side
– Enable and configure WS-A using WS-Policy in the WSDL
– Enable/disable and configure WS-A using deployment descriptors (JSR 109 1.3)
– Generate @Addressing, @Action and @FaultAction annotations in Java code from WS-

A WS-Policy and wsam:Action attributes on WSDL operations
– Publish WS-Policy for the runtime configuration taking all configuration methods into

account

■ JAX-RS provides an annotation-based approach to developing RESTful services, now fully
integrated into the core runtime

■ JAX-RS 1.1 adds integration with other Java EE 6 technologies such as Servlet 3.0, EJB
3.1, JCDI and JSR 250 security annotations

64 © 2011 IBM Corporation

Resources

■ Specifications;
– WS-Addressing 1.0:

• Core – http://www.w3.org/TR/ws-addr-core/
• SOAP Binding – http://www.w3.org/TR/ws-addr-soap/
• Metadata – http://www.w3.org/TR/ws-addr-metadata/

– JAX-WS 2.2 – http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index3.html
– HTTP – http://www.w3.org/Protocols/rfc2616/rfc2616.html
– JAX-RS 1.1 – http://jcp.org/aboutJava/communityprocess/mrel/jsr311/index.html

■ Products:
– IBM WebSphere Application Server V8.0 Beta Program –

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/websphere/wsasoa/
– WebSphere Application Server Feature Pack for Web 2.0 – http://www-

01.ibm.com/software/webservers/appserv/was/featurepacks/web20/

■ JAX-RS developerWorks article – http://www.ibm.com/developerworks/web/library/wa-jaxrs/

■ My email – katherine_sanders@uk.ibm.com

65 © 2009 IBM Corporation

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

