

Building Real-World Dojo Web
Applications

Andrew Ferrier
IBM Software Services for WebSphere

Agenda

● How has building web applications changed?
● Web 1.0 to Web 2.0
● AJAX / REST / JSON

● What is Dojo?
● Why is IBM interested and how does it fit in to

WebSphere?
● A flavor of Dojo
● How do we design applications for Dojo?
● Some Dojo Best Practices

Web 1.0 Model
● Static HTML content,

little-to-no-dynamicity

● Most folks know this
already

● Server-side-driven
content
● Page per state
● Perhaps with a small

amount of JavaScript for
effects or form validation

● Traditionally written with
a variety of technologies
– Servlets, JSPs, etc.

(1) User actions

trigger HTTP

request to a

web server

(2) Server does

some processing

and

returns an HTML

page to client

But this has disadvantages...

● Interaction is awkward
● Slow response time – every action requires a

entire page refresh
● W3C states that 1 second is highest acceptable

response time for interactive action

● Often ugly, flickery, content

Web 2.0 Model

● Browser using AJAX
to communicate with
server

● Lightweight RESTful
Service Calls

● Service Gateway or
other technology to
proxy all service
invocations

(1) User actions

trigger JavaScript

call to Ajax engine

(2) Ajax engine

Invokes asynch

request

(3) Server does

processing and

returns XML to the

Ajax engine

(4) Ajax engine

Displays the XML

in the browser

What is AJAX?

● Asynchronous JavaScript and XML
● Doesn't have to be about XML, and often isn't

● Uses XMLHTTPRequest feature of browser to
make an HTTP invocation without refreshing
page
● Used to retrieve data
● 90% of the time this is formatted in JSON

(JavaScript Object Notation)

JSON

{

“customerName”: “Andrew Ferrier”

“customerHeightInCm”: 100

“customerAddresses”: [
{ “addressType”: “home”,

 “addressLine1”: “123 Anytown”,

 “addressPostcode”: “AB12 3CD”

}

]

}

What is REST?

● Use resource-driven URLs:
● e.g. /rest/customer/1234

● Leverages HTTP Verbs
● GET, PUT, POST, DELETE

● Leverages HTTP Response Codes
● 200, 401, 403, etc.

● Typically uses lightweight data format
● JSON, plain text

● Particularly well-suited to CRUD

Web 2.0 Browser Model

● Thick-ish client
● JavaScript code runs in browser
● Events on page are used to drive code

(onLoad, onClick, etc...)
● Extra data and code are requested from server

using XHRs, with async callbacks in code

Web 1.0 Page

● Static HTML with mixed layout and content:

● Little to no JavaScript

Web 2.0 Page

● 3 primary components:
● HTML (DOM Model)

– Tree-like structure of HTML tags
– These days we use <div> a lot, we avoid 'styled' tags like

.
● JavaScript (including Dojo)
● CSS for Styling

Browser – Separation of Concerns

● Model (DOM) / View (CSS) / Controller
(JavaScript) allows for:
● Decoupling of styling and layout (CSS) from content

(HTML)
● Decoupling of code (JavaScript) from page model

(DOM)
● Event-driven programming model

Separation of Styling

Let's not forget the Service
Gateway...

● Facades RESTful services to UI, primarily to
resolve cross-domain security restrictions

● Can be implemented in a variety of
technologies:
● JAX-RS
● Servlets
● WebSphere ESB and Process Server
● … virtually anything else that can host HTTP

What's wrong with JavaScript?

● Traditional JavaScript weak at:
● Structured code – no classes, modules
● Cross-browser support – incompatibilities,

especially with the dreaded IE6
(http://www.ie6countdown.com/)

● No support for complex or rich form controls
● Hard to handle JavaScript context and other

awkwardnesses

http://www.ie6countdown.com/
http://www.ie6countdown.com/

So what is Dojo?

● Dojo is a set of common JavaScript libraries used for creating
Ajax and DHTML web applications

● http://dojotoolkit.org

● Open Source

● Large widget collection (“dijits”)

● Powerful I/O (XHR)

● Data abstraction layer

● Event management

● Logging and debugging

● Extensible modular architecture

● Declarative and programmatic

Why is this exciting and important?

● Rich, powerful user experience, bridging
interactivity gap

● Low barrier to entry in many environments
● Main requirement is a modern web browser

– Firefox 3.5+, Chrome, Safari
– IE 7+ also OK-ish

● With some kind of service gateway technology,
can connect to most types of backend

Why Is IBM Interested?

● Part of an overall business solution
● IBM does more than middleware
● Web 2.0 Feature Pack for WAS contains

Dojo
● Building Modern Rich Applications

Why use Dojo over the alternatives?
‣Numerous competing JavaScript toolkits

‣ JQuery, Prototype, YUI, Mootools, GWT

‣Dojo is IBM's strategic choice for a number of reasons

‣ More than just DOM access, CSS effects and AJAX

‣ Enterprise-grade toolkit and feature set (internationalization, accessibility, etc.)

‣ Actively supported and used by IBM

dōjō

Core

Widgets

Extensions

A Flavor of Dojo

● Dojo “Base” libraries are Dojo functions that are always
available inside the base dojo.js bootstrap

• Module Loader
• Lang Utils & Array Extras
• Cookie functions
• Query, Node & Style Utils
• I/O (Ajax)
• JSON serialization
• Fast CSS Style manipulation
• Deferreds

•Events (simple connect)
•Color functions
•Browser detection
•URL functions
•Doc Load/Unload Hooks
•Animation & Effects

 Fade, slide
 CSS colors

Dojo Base

Dojo Components

• Base
Extremely common functions that are always available no matter

what else is included
Provided within the dojo.js (<60kb, <24kb zipped)

• Core
Common functions
Loaded externally
Extended animation effects
Date parsers
Additional IO above xhr
and more

dōjō

Core

Widgets

Extensions

• Dijit
 Internationalized, accessible form, layout and specialized widgets

built upon a powerful set of widget functions
• Dojox

Everything not yet included in dojo / dijit
Quality varies widely
Read author notes!

• Utils
Tools to create custom builds
Reduce load time and size

dōjō

Core

Widgets

Extensions

Other Functions

Loading Dojo

● Import any stylesheets and themes you wish to use in your
application

● Link to core dojo.js

Credits: Excerpt from Dojo Fundamentals Ajax Experience presentation by Alex Russell

Adding Styling, Modifying DOM,
Adding an Event

AJAX with XHR

Using Dijits
Declarative

Programmatic

● Uniform Input visuals on all browsers

● dojo.form.Form provides easy access to all form
values as a single JSON object

Text Inputs
• TextBox
• ValidationTextBox
• TextArea

• DateTextBox
• TimeTextBox
• SimpleTextArea

• NumberTextBox
• NumberSpinner
• CurrencyTextBox

Selectors
• ComboBox
• MultiSelect
• FilteringSelect

Others
• Checkbox
• Radio
• Slider

• Button
• DropdownButton
• ComboButton

Buttons

•DateTextBox

•TimeTextBox

Some Dijits

Writing Dijits

● Can write own dijits
● 3 basic components:

● Template HTML (use dojoAttachPoints)
● JavaScript with certain call-in functions, such as
constructor(), buildRendering(), postCreate(), etc.

● CSS File

So how do we design?

● Wireframing to mock up UI
● Break UI into Bijits, specify each
● Service Catalog for Gateway
● Other definitions for backend services

● Web Services
● Legacy Services
● Database DDLs
● etc...

Wireframe page
● I did this using iplotz.com, more mature tools

available

Designing pages

● Break page into re-usable bijits
● Each is effectively a dijit with a business

function
● Has well-defined properties, events, etc.

● Nothing special about bijits – you don't need
explicit support

● Tie then together using a page controller (e.g.
page controller concept from IBM's Kuba)
● Just a class that does wiring

Bijits

Example Bijit – Customer

Service Catalog
● Find a way to describe JSON-based services
● Decouples implementation of UI from services
● Allows implementation by separate teams
● No formal templates or definitions
● No widely-accepted JSON schema description

● JSON is so simple, doesn't need one

Service Catalog Best Practices

● Keep services fine-grained
● Coarse-grained is a warning sign

● If you must do coarse-grained, always describe
JSON envelope in detail

● Services should always be short-running

Best Practices

● Develop in Chrome or Firefox with Firebug
● Don't Forget Internet Explorer (esp. IE6). To

debug:
● Use IE 8 in backwards-compat mode with

debugging console
● Use JSLint...

• By Doug Crockford

• www.jslint.com

• Javascript developer's “honest” friend

• Examine the entire output!
– Do all those globals look right?

• Play with options

• Works with HTML and JSON data too

• Install JSLint Eclipse plugin from Rock Star Apps

Best Practices
● Do Unit Testing - Dojo DOH framework:

http://www.sitepen.com/blog/2008/04/15/unit-
testing-custom-code-with-the-dojo-objective-
harness/

● Continuous Integration
● Use a continuous integration server such as

Hudson, Bamboo, etc...

● Need CSS experience on project – an often
over-looked skill

● Learn how to use HTTP headers to leverage
caching

http://www.sitepen.com/blog/2008/04/15/unit-testing-custom-code-with-the-dojo-objective-harness/
http://www.sitepen.com/blog/2008/04/15/unit-testing-custom-code-with-the-dojo-objective-harness/
http://www.sitepen.com/blog/2008/04/15/unit-testing-custom-code-with-the-dojo-objective-harness/
http://www.sitepen.com/blog/2008/04/15/unit-testing-custom-code-with-the-dojo-objective-harness/

Best Practices

● Do Logging

● Make sure developers understand JavaScript
(context and async behavior in particular)

● Generate 'production' code using an automated
build:
http://www.ibm.com/developerworks/web/library
/wa-aj-custom/index.html

dojo.provide(“my.mod.Foo”);
dojo.declare(“my.mod.Foo, null, {

 constructor: function my_mod_Foo_constructor(args) {
 // Do any initialization here
 var F = this.declaredClass + “contructor(): ”;
 console.log(F,”Starting: ”, args);
 }

});

dojo.provide(“my.mod.Foo”);
dojo.declare(“my.mod.Foo, null, {

 constructor: function my_mod_Foo_constructor(args) {
 // Do any initialization here
 var F = this.declaredClass + “contructor(): ”;
 console.log(F,”Starting: ”, args);
 }

});

http://www.ibm.com/developerworks/web/library/wa-aj-custom/index.html
http://www.ibm.com/developerworks/web/library/wa-aj-custom/index.html
http://www.ibm.com/developerworks/web/library/wa-aj-custom/index.html

Taken from TaskSpeed benchmarks - http://dante.dojotoolkit.org/taskspeed/report/charts.html

Use an up-to-date browser

Further Learning

● http://dojotipsntricks.com/
● O'Reilly Books
● http://dojocampus.org/
● http://dojotoolkit.org/

http://dojotipsntricks.com/
http://dojotipsntricks.com/
http://dojocampus.org/
http://dojotoolkit.org/

Summary

● Modern, interactive, Web 2.0 applications are
the future

● Dojo helps you build these quickly, efficient, and
to a high quality

● To design:
● Wireframe pages
● Break them into bijits
● Write a service catalog

andrew.ferrier@uk.ibm.com

mailto:andrew.ferrier@uk.ibm.com
mailto:andrew.ferrier@uk.ibm.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Enter the Dōjō
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Dojo Base
	Dojo Components
	Slide 23
	Loading Dojo
	Progressive AJAX Development
	AJAX calls with XHR
	Using Dijits
	Dijit: Form Widgets
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Browsers Matter – A Comparison
	Slide 42
	Slide 43

