
© 2010 IBM Corporation

WebSphere Application Server v7 OSGi Application
Best Practices

Emily Jiang, WebSphere Application Server OSGi Developer

2September
15, 2010

• OSGi general best practices

• WebSphere Application Server specific OSGi best Practices

Agenda

3September
15, 2010

OSGi Bundles and Class Loading

OSGi Bundle – A jar containing:
Classes and resources.

OSGi Bundle manifest.

What’s in the manifest:
Bundle-Version: Multiple versions of

bundles can live concurrently.

Import-Package: What packages
from other bundles does this
bundle depend upon?

Export-Package: What packages
from this bundle are visible and
reusable outside of the bundle?

Class Loading
Each bundle has its own loader.

No flat or monolithic classpath.

Class sharing and visibility decided
by declarative dependencies, not
by class loader hierarchies.

OSGi framework works out the
dependencies including versions.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyService bundle
Bundle-SymbolicName: com.sample.myservice
Bundle-Version: 1.0.0
Bundle-Activator: com.sample.myservice.Activator
Import-Package: com.something.i.need;version="1.1.2"
Export-Package: com.myservice.api;version="1.0.0"

Bundle

4September
15, 2010

BP1 - Use Import-Package not Require-Bundle

Require-Bundle
– Tightly coupled with a particular bundle with the specified

symbolic name and version
– High coupling between bundles
– Import all packages
– Bundle version management

• Import-Package
– Can wire to any bundles exporting the specified package

– Loose coupling between bundles

– Only import the package you need

– Package version management

MANIFEST.MF

...

Require-Bundle: com.ibm.ws.service;bundle-version=2.0.0

MANIFEST.MF

...

Import-Package: com.ibm.ws.service.api;version=2.0.0

5September
15, 2010

BP2 - Avoid split packages

• Split package
– A package is exported by two bundles at the same version and

the set of classes provided by each bundle differs.

• Why?
– Leads to the use of Require-Bundle, compromising the extent to

which systems using the bundles can be extended and
maintained.

• How?
– Keep all of the classes from any one package in a single bundle

6September
15, 2010

BP2 - Split Package examples

API A

org.hal.api 1.0.0

API B

org.hal.api 1.0.0

Implementation C

org.hal.a 1.0.0

Bundle C
 has to use 'Require-Bundle' to

ensure that it has classes from both parts
of the API

Figure 1. Consumers of split packages need to use the Require-Bundle header

7September
15, 2010

BP2 - Split Package examples

API A

org.hal.api 1.0.0

Implementation C

org.hal.a 1.0.0

Figure 2. A complete package exported from a single bundle maintains high bundle cohesion

8September
15, 2010

BP3 - Version bundles and packages

• What is semantic versioning?

– Uses a major.minor.micro.qualifier numbering scheme

• Major - Packages with versions that have different major parts are
not compatible both for providers as well as consumers.

• Minor – Backward compatible with the same major value of the
same package

• Micro – bug fixing

• Qualifier – identifier such as timestamp

– Changes in major: a binary incompatible, minor: enhanced API, micro:
no API changes

• Why?

– Clients can protect themselves against API changes that might break
them.

9September
15, 2010

BP3 - Version bundles and packages examples

Figure 3: A client and an implementation can use either of two equivalently versioned packages

Implementation A

Imports:
org.hal.a [1.0, 1.1)

API A

org.hal.a 1.0.0

API B

org.hal.a 1.0.0

Client A

Imports:
org.hal.a [1.0, 2.0)

API B

org.hal.a 1.1.0

API A

org.hal.a 1.0.0

Client A

Imports:
org.hal.a [1.0, 2.0)

Client B

Imports:
org.hal.a [1.1, 2.0)

Implementation B

Imports:
org.hal.a [1.1, 1.2)

Implementation A

Imports:
org.hal.a [1.0, 1.1)

 Figure 4: How a client and implementation are affected differently by a minor API version change

10September
15, 2010

BP3 - Version bundles and packages examples

Figure 5. How clients and implementations are similarly affected by a major API version change

org.hal.a 1.0.0

org.hal.a 2.0.0

API B

Client A

Imports:
org.hal.a [1.0, 2.0)

Client B

Imports:
org.hal.a [2.0, 3.0)

Implementation B

Imports:
org.hal.a [2.0, 2.1)

Implementation A

Imports:
org.hal.a [1.0, 1.1)

API A

11September
15, 2010

BP4 - Separate API from Implementations

• Why?
– Great flexibility

– Many implementation bundles → enable more services provided

– Reduce package dependencies → reduce circular
dependencies

• How?
– Put API classes in one bundle
– Put implementation classes in a separate bundle

12September
15, 2010

BP4 - Separate API and implementation examples

Figure 6. Badly designed provider bundle where the API and implementation classes are in the same bundle

API + Implementation

org.hal.myapi

org.hal.a.impl

 Client

org.hal.b.client

Both API and
implementation packages

imported by client

13September
15, 2010

BP5 - Share services not implementations

• Use the OSGi service registry to construct instances

• Why?
– Able to obtain an instance of an implementation without knowing

which one

– Achieve a loosely coupling of client, API and implementation

• How?

– Register an instance of the API interface in the OSGi service
registry

– Register an implementation of the OSGi ServiceFactory
interface in the OSGi service registry.

Service

14September
15, 2010

BP4 & 5 - examples

 API

org.hal.myapi

 Client

org.hal.b.client

API and implementation
packages in different bundles

 but still imported by client

 Implementation

org.hal.a.impl

 Figure 7. Badly designed provider bundles where the API and implementation classes have been separated

15September
15, 2010

BP4 & 5 - examples

 API

org.hal.myapi

 Client

org.hal.b.client

Client and implementation in
separate bundles, both import API. Client
 uses implementation through a service

defined by the API.

 Implementation

org.hal.a.impl

Figure 8: Well designed provider bundles where the API and implementation classes have been separated

16September
15, 2010

BP6 – Make Bundles Loosely Coupled & Highly
Cohesive

'Hairball' effect – one
bundle has many package

 dependencies

org.hal.log.impl

 Implementation

org.hal.log.impl

SomeotherAPI

DBAPI

TransactionsAPI

FileSystemAPI

JPAAPI

 API

org.hal.log.api org.hal.fslog.impl

Figure 9. Poorly purposed system where a single bundle provides multiple implementations of the same API

17September
15, 2010

BP6 – Make Bundles Loosely Coupled &
Highly Cohesive

 Implementation

org.hal.DBlog.impl

DBAPI

 API

org.hal.log.api

 Implementation

org.hal.fslog.impl

FileSystemAPI

 Implementation

org.hal.DBlog.impl

DBAPI

 Implementation

org.hal.DBlog.impl

DBAPI

Figure 10. A well purposed system where each implementation of an API is provided by a separate bundle

18September
15, 2010

Using services can be hard!

@Override

public void serviceChanged(ServiceEvent event)

{

ServiceReference ref = event.getServiceReference();

if (ls.get() == null && event.getType() == ServiceEvent.REGISTERED) {

ls.set((LogService) ctx.getService(ref));

} else if (ls.get() != null && event.getType() ==
ServiceEvent.UNREGISTERING &&

ref == lr.get()) {

ref = ctx.getServiceReference(LogService.class.getName());

if (ref != null) {

ls.set((LogService) ctx.getService(ref));

lr.set(ref);

}

}

}

private BundleContext ctx;

private AtomicReference<LogService> ls = new
AtomicReference<LogService>();

private AtomicReference<ServiceReference> lr = new
AtomicReference<ServiceReference>();

public void start(BundleContext ctx) throws InvalidSyntaxException

{

this.ctx = ctx;

ctx.addServiceListener(this,
"(objectClass=org.osgi.service.log.LogService)");

ServiceReference ref =
ctx.getServiceReference(LogService.class.getName());

if (ref != null) {

ls.set((LogService) ctx.getService(ref));

lr.set(ref);

}

}

19September
15, 2010

BP7 - Use Blueprint

• Specifies a Dependency Injection container, standardizing established
Spring conventions

• Configuration and dependencies declared in XML “module blueprint”,
which is a standardization of Spring “application context” XML.

– Extended for OSGi: publishes and consumes components as OSGi services
• Simplifies unit test outside either Java EE or OSGi r/t.
• The Blueprint DI container is a part of the server runtime (compared

to the Spring container which is part of the application.)

dependencies injected

publishes
service consumes

service

A static assembly and
configuration of

components (POJOs)
Blueprint bundle

OSGI-INF/blueprint/
blueprint.xml

20September
15, 2010

BP7 - Blueprint service-bundle examples

public interface BillingService {
void bill(Order o);

}

Billing

<blueprint>
 <service ref=”service” interface =

”org.example.bill.BillingService” />
 <bean id=”service” scope=”prototype”

class=”org.example.bill.impl.BillingServiceImpl” />
</blueprint>

Billing service bundle

-“prototype” scope indicates a
new instance is created by the
container for each use.
-“singleton” scope is the default.

21September
15, 2010

BP7- Blueprint client-bundle examples

public class ShopImpl {

private BillingService billingService;
void setBillingService(BillingService srv) {

billingService = srv;
}

void process(Order o) {
billingService.bill(o);
}

}

e-Commerce

<blueprint>
 <bean id=”shop” class=”org.example.ecomm.ShopImpl”>
 <property name=”billingService” ref=”billingService” />
 </bean>
 <reference id=”billingService”

interface=”org.example.bill.BillingService” />
</blueprint>

e-Commerce bundle

-injected service reference
-service can change over time
-can be temporarily absent
 without the bundle caring
-managed by Blueprint container

22September
15, 2010

• OSGi general best practices

• WebSphere Application Server Specific OSGi best Practices

Agenda

23September
15, 2010

New: “Enterprise Bundle Archive” (EBA)

– An isolated, cohesive application consisting of a collection of
bundles, is deployed as a logical unit in a “.eba” archive

• An “OSGi Application”.
– Constituent bundles may be contained (“by-value”) or referenced

from a bundle repository.
– Services provided by the application are isolated to the application

unless explicitly exposed through EBA-level application manifest
– Config by exception - absence of APPLICATION.MF means:

• application content is the set of bundles contained by-value plus any
repository-hosted dependencies identified during deployment.

Application Manifest

Enumerates constituent bundles

Declares Application “externals”

blog.eba

blog-persistence.jar

blog.jar

blog-servlet.jar

Bundle Repository

json4j.jar

24September
15, 2010

BP8 - Use blueprint to enable service-based
provisioning

• Use Blueprint to determine the service a bundle provides and
requires.

• Use Blueprint during deployment to provision implementation
bundles from the application archive or bundle repositories.

 API

org.hal.myapi

 Client

org.hal.b.client

 Implementation

org.hal.a.impl

Figure 11. Service based provisioning example

25September
15, 2010

BP9 - Use blueprint to enable SCA integration

• What is SCA (Service Component Architecture)?
– Assemble OSGi applications with other application types (for

example, Java EE).
– Expose OSGi application services via various transports and

protocols and to enable service dependencies to call out via those
transports and protocols

• How to interact with SCA?
– Use Blueprint to expose services

 to SCA
– A blueprint façade can be used to

 describe non-blueprint bundle

 services to SCA

Application
SCA component

A

Application
SCA component

B

Application
SCA component

C B

Figure 12. Blueprint support for SCA integration

26

Application

SCA Composite

BundleBundle

Bundle

POJO
POJOs assembled using a Blueprint
context and scoped by an OSGi Bundle.

OSGi Bundles assembled in an OSGi
Application and integrated through
services in the OSGi service registry

SCA Composite assembled from
heterogeneous components including an

OSGi Application component, and
integrated through SCA services with

configurable bindings (JMS, web
services…).

POJO

POJO

Component Warehouse
Component
(JEE)

Customer
Component

(POJO)
Application

JMS

BP10 - Make best use of the component models
on offer

27September
15, 2010

 BP11 – Take good care of APPLICATION.MF

• Lists the bundles contained in the EBA under Application-
Content, so that they are marked as isolated bundles

• Always provide your own APPLICATION.MF

• In production environment, upload bundles in bundle
repositories except WARs

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content:

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle:

 com.ibm.json.java;version="[1.0.0,2.0.0)"

APPLICATION.MF

28September
15, 2010

 BP12 – Use bundle repositories

29September
15, 2010

BP12 – Create Web Application Bundles
(WABs) not WARs

• What?
– When developing enterprise OSGi applications, create a Web

application bundle (WAB) and do not rely on the WAR to WAB
conversion.

• Why?
– If making WARs, the automatic conversation will need to

convert WAR to WAB
• No versioning in Import-Package
• Some identity missing
• Less flexible in future maintenance

30September
15, 2010

BP13 - Only Use-Bundle when you must

• What?
– Use-Bundle expresses preferable one bundle over any others

that export the same package.

• Why?
– Introduce additional provisioning work if you include the Use-

Bundle for no specific reasons

• When?
– Specify Use-Bundle when two applications need to share the

same version of a class to ensure they are wired to the same
providing bundle.

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content:

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle:

 com.ibm.json.java;version="[1.0.0,2.0.0)"

APPLICATION.MF

31September
15, 2010

BP13 - Only Use-Bundle when must - Example

Shared Bundle Space

org.hal.a1.0

API.A Bundle X

Imports:
org.hal.a [1.0, 2.0)

Implementation.A

Imports:
org.hal.a [1.0, 1.1)

org.hal.a 1.5

API.B Bundle Y

Imports:
org.hal.a [1.5, 2.0)

Implementation.B

Imports:
org.hal.a [1.5, 1.6)

Bundle Z

Imports:
org.hal.a [1.0, 2.0)

Figure 13. Bundle Z is wired to API.B and therefore cannot see
Implementation.A

32September
15, 2010

BP13 - Only Use-Bundle when must - Example

Shared Bundle Space

org.hal.a1.0

API.A Bundle X

Imports:
org.hal.a [1.0, 2.0)

Implementation.A

Imports:
org.hal.a [1.0, 1.1)

org.hal.a 1.5

API.B Bundle Y

Imports:
org.hal.a [1.5, 2.0)

Implementation.B

Imports:
org.hal.a [1.5, 1.6)

Bundle Z

Imports:
org.hal.a [1.0, 2.0)
Use-Bundle: API AFigure 14. Bundle Z is wired to API.A and can now see Implementation.A

33

BP14 - Use persistence bundles to share your
persistence units

• What?
– When using JPA in an application, package the bundle as an

OSGi persistence bundle instead of merging into other bundles.

• Why?
– Persistence bundles can also be shared by a large number of

OSGi based persistence clients

• Example

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Blog Persistence Bundle
Bundle-SymbolicName:
com.ibm.ws.eba.example.blog.persistence
Bundle-Version: 1.1.0
Bundle-Vendor: IBM
Bundle-ActivationPolicy: lazy
Meta-Persistence:
Import-Package:
com.ibm.ws.eba.example.blog.comment.persistence.api;versi
on="[1.0.0,1.1.0)",

com.ibm.ws.eba.example.blog.persistence.api;version="[1.0
.0,1.1.0)",
 javax.persistence;version="1.0.0"

34

BP15 – Let container to do the heavy lift

• What?

– Use container services to build applications and supply
enterprise qualities of service rather than writing code to
manage services.

• Why?

– Reliable

– Easier to maintain business code

• How?

– Use blueprint

– Use JPA manage your resource

– Use Declarative Transaction

35September
15, 2010

OSGi Application Best Practices
– BP1 - Use Import-Package instead of Require-Bundle

– BP2 - Avoid split packages

– BP3 - Version bundles and packages

– BP4 - Separate API from implementations

– BP5 - Share services not implementations

– BP6 – Make bundles loosely coupled & highly cohesive

– BP7 - Use Blueprint

WebSphere Application Server OSGi Application Specific Best
Practices
– BP8 - Use Blueprint to enable service-based provisioning

– BP9 - Use Blueprint to enable SCA integration

– BP10 - Make best use of the component models on offer

– BP11 - take good care of APPLICATION.MF

– BP12 – Use bundle repositories

– BP13 – Create Web Application Bundles(WABs) instead of WARs

– BP14 - Only Use-Bundle when you must

– BP15 - Use persistence bundles to share your persistence units

– BP16 – Let container to do the heavy lift

Summary

36

Quiz – What best practices are used?

Blogging
Service

Blog
Persistence

Service
blog-servlet

Web application bundle

META-INF/
persistence.xml

WEB-INF/

web.xml OSGI-INF/blueprint/
blueprint.xml

OSGI-INF/blueprint/
blueprint.xml

JNDI EM

blog.eba

blog

blog-persistence

blog-api

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content:

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle:

 com.ibm.json.java;version="[1.0.0,2.0.0)"

37

References

IBM DeveloperWorks Articles

 Best practices for developing and working with OSGi applications

 Developing enterprise OSGi applications for WebSphere Application Server

WebSphere Application Server OSGi feature pack InfoCenter

WebSphere Application Server Information Center including documentation for the Feature Pack for OSGi Applications and JPA 2.0

Get products and technologies

 IBM WebSphere Application Server V7 for Developers

 IBM WebSphere Application Server V7 Feature Pack for OSGi Applications and Java Persistence API 2.0

 IBM Rational Development Tools for OSGi Applications

 IBM Rational Application Developer Beta for OSGi-based application tools

Discuss Forum

 OSGi Application feature pack discussion forum

http://www.ibm.com/developerworks/websphere/techjournal/1007_charters/1007_charters.html
http://www.ibm.com/developerworks/websphere/techjournal/1007_robinson/1007_robinson.html
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=/com.ibm.websphere.jpafep.multiplatform.doc/info/ae/ae/welcome_fepjpa.html
http://www.ibm.com/developerworks/downloads/ws/wasdevelopers/
http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/
http://www.ibm.com/developerworks/rational/downloads/10/rationaldevtoolsforosgiapplications.html
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/rational/radob/index.shtml
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1928

38September
15, 2010

Questions?

39September
15, 2010

Copyright and Trademarks

© IBM Corporation 2010. All rights reserved. IBM, the
IBM logo, ibm.com and the globe design are
trademarks of International Business Machines
Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.
Other company, product, or service names may be
trademarks or service marks of others.

file:///../../../../../../Documents and Settings/Administrator/Local Settings/Temp/notesEA312D/www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

