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OSGi Bundles and Class Loading

OSGi Bundle – A jar containing:
Classes and resources.

OSGi Bundle manifest.

What’s in the manifest:
Bundle-Version: Multiple versions of 

bundles can live concurrently.

Import-Package: What packages 
from other bundles does this 
bundle depend upon?

Export-Package: What packages 
from this bundle are visible and 
reusable outside of the bundle?

Class Loading
Each bundle has its own loader.

No flat or monolithic classpath.

Class sharing and visibility decided 
by declarative dependencies, not 
by class loader hierarchies.

OSGi framework works out the 
dependencies including versions.

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: MyService bundle
Bundle-SymbolicName: com.sample.myservice
Bundle-Version: 1.0.0
Bundle-Activator: com.sample.myservice.Activator
Import-Package: com.something.i.need;version="1.1.2"
Export-Package: com.myservice.api;version="1.0.0"

Bundle
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BP1 - Use Import-Package not Require-Bundle 

Require-Bundle 
– Tightly coupled with a particular bundle with the specified 

symbolic name and version
– High coupling between bundles
– Import all packages 
– Bundle version management

• Import-Package 
– Can wire to any bundles exporting the specified package

– Loose coupling between bundles

– Only import the package you need

– Package version management

MANIFEST.MF

...

Require-Bundle: com.ibm.ws.service;bundle-version=2.0.0

MANIFEST.MF

...

Import-Package: com.ibm.ws.service.api;version=2.0.0
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BP2 - Avoid split packages 

• Split package
– A package is exported by two bundles at the same version and 

the set of classes provided by each bundle differs.

• Why?
– Leads to the use of Require-Bundle, compromising the extent to 

which systems using the bundles can be extended and 
maintained.

• How?
– Keep all of the classes from any one package in a single bundle
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BP2 - Split Package examples

API  A    

org.hal.api 1.0.0

API  B

org.hal.api 1.0.0

Implementation C

org.hal.a 1.0.0

Bundle C
 has to use 'Require-Bundle' to 

ensure that it has classes from both parts 
of the API

Figure 1. Consumers of split packages need to use the Require-Bundle header
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BP2 - Split Package examples

API A

org.hal.api 1.0.0

Implementation C

org.hal.a 1.0.0

Figure 2. A complete package exported from a single bundle maintains high bundle cohesion
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BP3 - Version bundles and packages

• What is semantic versioning?

– Uses a major.minor.micro.qualifier numbering scheme

• Major - Packages with versions that have different major parts are 
not compatible both for providers as well as consumers.

• Minor – Backward compatible with the same major value of the 
same package

• Micro – bug fixing

• Qualifier – identifier such as timestamp

– Changes in major: a binary incompatible, minor: enhanced API, micro: 
no API changes

• Why?

– Clients can protect themselves against API changes that might break 
them. 
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BP3 - Version bundles and packages examples

Figure 3: A client and an implementation can use either of two equivalently versioned packages

Implementation A

Imports:
org.hal.a [1.0, 1.1)

API A

org.hal.a 1.0.0

API B

org.hal.a 1.0.0

Client A

Imports:
org.hal.a [1.0, 2.0)

API B

org.hal.a 1.1.0

API A

org.hal.a 1.0.0

Client A

Imports:
org.hal.a [1.0, 2.0)

Client B

Imports:
org.hal.a [1.1, 2.0)

Implementation B

Imports:
org.hal.a [1.1, 1.2)

Implementation A

Imports:
org.hal.a [1.0, 1.1)

 Figure 4:  How a client and implementation are affected differently by a minor API version change
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BP3 - Version bundles and packages examples

Figure 5. How clients and implementations are similarly affected by a major API version change

org.hal.a 1.0.0

org.hal.a 2.0.0

API B

Client A

Imports:
org.hal.a [1.0, 2.0)

Client B

Imports:
org.hal.a [2.0, 3.0)

Implementation B

Imports:
org.hal.a [2.0, 2.1)

Implementation A

Imports:
org.hal.a [1.0, 1.1)

API A
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BP4 - Separate API from Implementations

• Why?
– Great flexibility

– Many implementation bundles → enable more services provided

– Reduce package dependencies → reduce circular 
dependencies

• How?
– Put API classes in one bundle
– Put implementation classes in a separate bundle
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BP4 - Separate API and implementation examples

Figure 6. Badly designed provider bundle where the API and implementation classes are in the same bundle

API + Implementation

org.hal.myapi

org.hal.a.impl

 Client

org.hal.b.client

Both API and 
implementation packages 

imported by client



13September 
15, 2010

 

BP5 - Share services not implementations

• Use the OSGi service registry to construct instances

• Why?
– Able to obtain an instance of an implementation without knowing 

which one

– Achieve a loosely coupling of client, API and implementation

• How?

– Register an instance of the API interface in the OSGi service 
registry

– Register an implementation of the OSGi ServiceFactory 
interface in the OSGi service registry.

Service
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BP4 & 5 - examples

    API

org.hal.myapi

 Client

org.hal.b.client

API and implementation 
packages in different bundles

 but still imported by client

  Implementation

org.hal.a.impl

 Figure 7. Badly designed provider bundles where the API and implementation classes have been separated
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BP4 & 5 - examples

    API

org.hal.myapi

 Client

org.hal.b.client

Client and implementation in 
separate bundles, both import API. Client
 uses implementation through a service 

defined by the API.

  Implementation

org.hal.a.impl

Figure 8: Well designed provider bundles where the API and implementation classes have been separated
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BP6 – Make Bundles Loosely Coupled & Highly 
Cohesive

'Hairball' effect – one 
bundle has many package

 dependencies

org.hal.log.impl

    Implementation

org.hal.log.impl

SomeotherAPI

DBAPI

TransactionsAPI

FileSystemAPI

JPAAPI

    API

org.hal.log.api org.hal.fslog.impl

Figure 9. Poorly purposed system where a single bundle provides multiple implementations of the same API
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BP6 – Make Bundles Loosely Coupled & 
Highly Cohesive

 Implementation

org.hal.DBlog.impl

DBAPI

    API

org.hal.log.api

 Implementation

org.hal.fslog.impl

FileSystemAPI

 Implementation

org.hal.DBlog.impl

DBAPI

 Implementation

org.hal.DBlog.impl

DBAPI

Figure 10. A well purposed system where each implementation of an API is provided by a separate bundle
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Using services can be hard!

@Override

public void serviceChanged(ServiceEvent event) 

{

ServiceReference ref = event.getServiceReference();

if (ls.get() == null && event.getType() == ServiceEvent.REGISTERED) {

ls.set((LogService) ctx.getService(ref));

} else if (ls.get() != null && event.getType() == 
ServiceEvent.UNREGISTERING &&

ref == lr.get()) {

ref = ctx.getServiceReference(LogService.class.getName());

if (ref != null) {

ls.set((LogService) ctx.getService(ref));

lr.set(ref);

}

}

}

private BundleContext ctx;

private AtomicReference<LogService> ls = new 
AtomicReference<LogService>();

private AtomicReference<ServiceReference> lr = new 
AtomicReference<ServiceReference>();

public void start(BundleContext ctx) throws InvalidSyntaxException

{

this.ctx = ctx;

ctx.addServiceListener(this, 
"(objectClass=org.osgi.service.log.LogService)");

ServiceReference ref = 
ctx.getServiceReference(LogService.class.getName());

if (ref != null) {

ls.set((LogService) ctx.getService(ref));

lr.set(ref);

}

}
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BP7 - Use Blueprint

• Specifies a Dependency Injection container, standardizing established 
Spring conventions

• Configuration and dependencies declared in XML “module blueprint”, 
which is a standardization of Spring “application context” XML.

– Extended for OSGi: publishes and consumes components as OSGi services
• Simplifies unit test outside either Java EE or OSGi r/t.
• The Blueprint DI container is a part of the server runtime (compared 

to the Spring container which is part of the application.)

dependencies injected

publishes
service consumes

service

A static assembly and 
configuration of 

components (POJOs)
Blueprint bundle

OSGI-INF/blueprint/
blueprint.xml
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BP7 - Blueprint service-bundle examples

public interface BillingService {
void bill(Order o);

}

Billing

<blueprint>
  <service ref=”service” interface = 

”org.example.bill.BillingService” />
  <bean id=”service” scope=”prototype” 

class=”org.example.bill.impl.BillingServiceImpl” />
</blueprint>

Billing service bundle

-“prototype” scope indicates a 
new instance is created by the 
container for each use.
-“singleton” scope is the default.
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BP7- Blueprint client-bundle examples

public class ShopImpl {

private BillingService billingService;
void setBillingService(BillingService srv) {

billingService = srv;
}

void process(Order o) {
billingService.bill(o);
}

}

e-Commerce

<blueprint>
  <bean id=”shop” class=”org.example.ecomm.ShopImpl”>
    <property name=”billingService” ref=”billingService” />
  </bean>
  <reference id=”billingService” 

interface=”org.example.bill.BillingService” />
</blueprint>

e-Commerce bundle

-injected service reference
-service can change over time
-can be temporarily absent 
    without the bundle caring
-managed by Blueprint container 
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New: “Enterprise Bundle Archive” (EBA)

– An isolated, cohesive application consisting of a collection of 
bundles, is deployed as a logical unit in a “.eba” archive

• An “OSGi Application”.
– Constituent bundles may be contained (“by-value”) or referenced 

from a bundle repository.
– Services provided by the application are isolated to the application 

unless explicitly exposed through EBA-level application manifest
– Config by exception - absence of APPLICATION.MF means:

• application content is the set of bundles contained by-value plus any 
repository-hosted dependencies identified during deployment.

Application Manifest

Enumerates constituent bundles

Declares Application “externals”

blog.eba

blog-persistence.jar

blog.jar

blog-servlet.jar

Bundle Repository

json4j.jar
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BP8 - Use blueprint to enable service-based 
provisioning

• Use Blueprint to determine the service a bundle provides and 
requires.

• Use Blueprint during deployment to provision implementation 
bundles from the application archive or bundle repositories.

    API

org.hal.myapi

 Client

org.hal.b.client

  Implementation

org.hal.a.impl

Figure 11. Service based provisioning example
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BP9 - Use blueprint to enable SCA integration

• What is SCA (Service Component Architecture)?
– Assemble OSGi applications with other application types (for 

example, Java EE).
– Expose OSGi application services via various transports and 

protocols and to enable service dependencies to call out via those 
transports and protocols

• How to interact with SCA?
– Use Blueprint to expose services 

          to SCA
– A blueprint façade can be used to 

         describe non-blueprint bundle 

          services to SCA

Application
SCA component

A

Application
SCA component

B

Application
SCA component

C B

Figure 12. Blueprint support for SCA integration
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Application

SCA Composite

BundleBundle

Bundle

POJO
POJOs assembled using a Blueprint 
context and scoped by an OSGi Bundle.

OSGi Bundles assembled in an OSGi 
Application and integrated through 
services in the OSGi service registry

SCA Composite assembled from 
heterogeneous components including an 

OSGi Application component, and 
integrated through SCA services with 

configurable bindings (JMS, web 
services…).

POJO

POJO

Component Warehouse
Component
(JEE)

Customer
Component

(POJO)
Application

JMS

BP10 - Make best use of the component models 
on offer



27September 
15, 2010

 

 BP11 – Take good care of APPLICATION.MF 

• Lists the bundles contained in the EBA under Application-
Content, so that they are marked as isolated bundles

• Always provide your own APPLICATION.MF

• In production environment, upload bundles in bundle 
repositories except WARs

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content: 

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle: 

 com.ibm.json.java;version="[1.0.0,2.0.0)"

APPLICATION.MF
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 BP12 – Use bundle repositories 
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BP12 – Create Web Application Bundles 
(WABs) not WARs

• What?
– When developing enterprise OSGi applications, create a Web 

application bundle (WAB) and do not rely on the WAR to WAB 
conversion.

• Why?
– If making WARs, the automatic conversation will need to 

convert WAR to WAB
• No versioning in Import-Package
• Some identity missing
• Less flexible in future maintenance



30September 
15, 2010

 

BP13 - Only Use-Bundle when you must

• What?
– Use-Bundle expresses preferable one bundle over any others 

that export the same package.

• Why?
– Introduce additional provisioning work if you include the Use-

Bundle for no specific reasons

• When?
– Specify Use-Bundle when two applications need to share the 

same version of a class to ensure they are wired to the same 
providing bundle.

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content: 

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle: 

 com.ibm.json.java;version="[1.0.0,2.0.0)"

APPLICATION.MF
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BP13 - Only Use-Bundle when must - Example

Shared Bundle Space

org.hal.a1.0

API.A Bundle X

Imports:
org.hal.a [1.0, 2.0)

Implementation.A

Imports:
org.hal.a [1.0, 1.1)

org.hal.a 1.5

API.B Bundle  Y

Imports:
org.hal.a [1.5, 2.0)

Implementation.B

Imports:
org.hal.a [1.5, 1.6)

Bundle Z

Imports:
org.hal.a [1.0, 2.0)

Figure 13. Bundle Z is wired to API.B and therefore cannot see 
Implementation.A
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BP13 - Only Use-Bundle when must - Example

Shared Bundle Space

org.hal.a1.0

API.A Bundle X

Imports:
org.hal.a [1.0, 2.0)

Implementation.A

Imports:
org.hal.a [1.0, 1.1)

org.hal.a 1.5

API.B Bundle Y

Imports:
org.hal.a [1.5, 2.0)

Implementation.B

Imports:
org.hal.a [1.5, 1.6)

Bundle Z

Imports:
org.hal.a [1.0, 2.0)
Use-Bundle: API AFigure 14. Bundle Z is wired to API.A and can now see Implementation.A
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BP14 - Use persistence bundles to share your 
persistence units

• What?
– When using JPA in an application, package the bundle as an 

OSGi persistence bundle instead of merging into other bundles. 

• Why?
– Persistence bundles can also be shared by a large number of 

OSGi based persistence clients

• Example

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Blog Persistence Bundle
Bundle-SymbolicName: 
com.ibm.ws.eba.example.blog.persistence
Bundle-Version: 1.1.0
Bundle-Vendor: IBM
Bundle-ActivationPolicy: lazy
Meta-Persistence: 
Import-Package: 
com.ibm.ws.eba.example.blog.comment.persistence.api;versi
on="[1.0.0,1.1.0)",
 
com.ibm.ws.eba.example.blog.persistence.api;version="[1.0
.0,1.1.0)",
 javax.persistence;version="1.0.0"
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BP15 – Let container to do the heavy lift 

• What?

– Use container services to build applications and supply 
enterprise qualities of service rather than writing code to 
manage services.

• Why?

– Reliable

– Easier to maintain business code

• How?

– Use blueprint

– Use JPA manage your resource

– Use Declarative Transaction
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OSGi Application Best Practices
– BP1 - Use Import-Package instead of Require-Bundle

– BP2 - Avoid split packages

– BP3 - Version bundles and packages

– BP4 - Separate API from implementations

– BP5 - Share services not implementations

– BP6 – Make bundles loosely coupled  & highly cohesive

– BP7 - Use Blueprint 

WebSphere Application Server OSGi Application Specific Best 
Practices
– BP8 - Use Blueprint to enable service-based provisioning

– BP9 - Use Blueprint to enable SCA integration

– BP10 - Make best use of the component models on offer

– BP11 - take good care of APPLICATION.MF

– BP12 – Use bundle repositories

– BP13 – Create Web Application Bundles(WABs) instead of WARs

– BP14 - Only Use-Bundle when you must

– BP15 - Use persistence bundles to share your persistence units

– BP16 – Let container to do the heavy lift  

Summary
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Quiz – What best practices are used?

Blogging
Service

Blog
Persistence

Service
blog-servlet

Web application bundle

META-INF/
persistence.xml

WEB-INF/

web.xml OSGI-INF/blueprint/
blueprint.xml

OSGI-INF/blueprint/
blueprint.xml

JNDI EM

blog.eba

blog

blog-persistence

blog-api

Manifest-Version: 1.0

Application-ManifestVersion: 1.0

Application-Name: Aries Blog

Application-SymbolicName: com.ibm.ws.eba.example.blog.app

Application-Version: 1.0

Application-Content: 

 com.ibm.ws.eba.example.blog.api;version=1.0.0,

 com.ibm.ws.eba.example.blog.persistence;version=1.0.0,

 com.ibm.ws.eba.example.blog.web;version=1.0.0,

 com.ibm.ws.eba.example.blog;version=1.0.0

Use-Bundle: 

 com.ibm.json.java;version="[1.0.0,2.0.0)"
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Questions?
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