

Managing Change Across Complex WebSphere
Enterprise Environments

David Sayers
Richard Bettison

Objective

 Environment provision
 Introduce change into environments
 Consistent process for code deployments
 Comparison between environments
 Comparing and environment overtime
 Who, what, when?
 Self contained “super archive” that contains all code,

scripts and configuration to provision an entire
environment

 Efficiencies through self-service
 Speeding up the software development life-cycle
 Start to view middleware components more as

commodities

Scope of seminar

 Version Control System
o Development area
o Release area

 Common approach to versioning

 Build Process

 Build Package (input to deployment process)

 Environment Provisioning and Deployment
Process

Version Control – Development area

 Development area contains all the source
code

 Developers and administration team have
access to source

 Application build.xml reside here

Sample Development area
Salesapp_dev\

\applicationEARs

\database

\source

Version Control – Release Area

 Release area contains all the scripts and
properties files used for deployment.

 Only administration team have edit access.
Developers can view content.

 Shared resources are symlinks (in ClearCase /
svn) or IVY Repository if using ANT or in
POM.xml if Maven2

Sample Release area

Saleapp_release

\j2ee

\html

\mq

\scripts

\clients

How does the VCS relate to the build process?
 Build process is inextricably linked to standards in

place in version control system
 Developer work on the team stream(s)
 Developer delivers to the build stream
 Build initially on build stream. Successful builds are

delivered to the integration stream
 Re-built on integration stream
 Ensures only successful builds are done on the

integration stream
 Build package is the output from Integration Stream
 Integration stream is baselined
 Baseline is then recommended

Development Stream(s)Build StreamIntegration Stream

Delivery

Delivery

Baseline

Sample Development Area

Build Process #1

Generic build framework of re-usable components
to perform all common tasks:

 buildJar
 buildWar
 buildEjb
 buildPortlet
 buildBusinessProcess
 buildEar

Build Process #2

 Application teams create and application
specific build.xml file that calls generic build
targets

 Example xml
o buildJar

o buildJar

o buildWar

o buildEar

Build a JAR file

<target name="doCustomerBSJava_Project" depends="init,
generateFoundationJXS" description="Builds all the java code">

<ant antfile="${GENERICBUILD}" target=“buildJar">
<property name="project" value="${project}"/>
<property name="classpath" value="${classpath}"/>
<property name="component" value="CustomerBS"/>
<property name="sourceDir" value="$

{dir.java.src}/CustomerBS/src"/>
<property name="workingDir" value="${workingDir}"/>
<property name="workingDir.lib" value="$

{workingDir}/lib/${project.staging}/lib"/>
</ant>

</target>

Build a WAR file

<target name="buildWar_ProjectPortal" depends="init" description="Build
Project Portal War file">

 <ant antfile="${GENERICBUILD}" target=“buildWar">
 <property name="war.name" value="ProjectPortalWeb.war"/>
 <property name="component" value="ProjectPortalWeb"/>
 <property name="sourceDir" value="$

{dir.web.src}/ProjectPortalWeb/src"/>
 <property name="include" value="**/*"/>
 <property name="sourceDir.meta" value="$

{dir.web.src}/ProjectPortalWeb/WebContent"/>
 <property name="project" value="${project}"/>
 <property name="classpath" value="${classpath}:$

{classpathWAR}"/>
 <property name="workingDir" value="${workingDir}"/>
 </ant>

</target>

Build an EAR file

<ant antfile="${GENERICBUILD}" target=“buildEar">
<property name="sourceDir" value="${dir.ear.src}/$

{application.name}" />
<property name="sourceDir.jx" value="${dir.ear.src}/$

{application.name}" />
<property name="include" value="" />
<property name="excludeJars" value="" />
<property name="sourceDir.meta" value="${dir.ear.src}/$

{application.name}/META-INF" />
<property name="workingDir.meta" value="${workingDir.dist}/

META-INF" />
<property name="project" value="${project}" />
<property name="component" value="projectapplication" />
<property name="classpath" value="${classpath}" />
<property name="workingDir" value="${workingDir}" />

</ant>

Build Process – benefits #1

 Can change the implementation of Generic
Build and ALL application teams start using
this without having to make any changes

 Can add additional components to Generic
Build process that are immediately available to
all application teams

o E.g.: Recently added Agitar for code coverage.

 Enforce standard use of libraries: log4j, jms,
oracle, etc.

Build Process – benefits #2

 Application teams can still implement custom
build components if required

 Output of the build process is a the deployment
“Build Package”

 Optionally developers can own the build
process and abide by a contract to provide Build
Package in a specific format

Versioning

 Baseline / label in version control system
should be the only version required

 Standard approach
o MAJOR.MINOR.BUILD
o e.g. 03.02.001

 Common approach to versioning allows you
think your version control system , deployment
and runtime infrastructure

Versioning

Version used as an identifier in:
 Version Control System

 MANIFEST.MF

 Build package (super archive containing code and
deployment scripts / properties)

 Deployment tool

 Use of J2EE standard tags in MANIFEST
(Application-Version) the version is displayed in
SystemOut

Audit

Typically audit is carried out backwards – starting
at runtime environment

 Check version of deployed code in SystemOut
 Check deployment audit logs to see who / when

deployment happened
 May also want to code has been promoted through

the environments correctly
 Finally, may also want to perform some analysis on

version control system i.e. what is the difference
between this version of code and a previous one

Example Audit

Build Package
 So far we have focused on standard java / j2ee

modules
 Build Package is a superset of multiple j2ee modules

along with ALL the scripts and properties that allow
you to provision, configure and deploy to specific
target environments

 Build Package is the output from an application
build.xml plus the contents of the release area

 The combined package is base-lined, zipped or tarred
(depending on target) to provide a self-contained
archive that will provision an entire runtime
environment (clusters, web server, virtualhosts,
datasource, QCF, Queue destination, QMGR’s,
Queues, Topics, etc.) and installs code

dev_area \ application EARS
 \ database(s)
 \ source

release_area \ html
 \ J2EE
 \ clients

Baseline File: SALESAPP_BUILD_01_02_003

BUILD PACKAGE

SALESAPP_BUILD_01_02_003.tar

Creating the Build Package

Deployment Process

 The input to the deployment process is the
build package

 Self-contained archive that can be deployed
to any target environment. Only pre-requisite is
a binary install of target runtime (DM,
nodeagents, MQ, IHS, etc.)

 Build Package is pushed to local DM,
unpacked and installed using the scripts,
utilities and properties contained in the Build
Package (no scripts are required locally)

`

Implementation Manager selects:

• Application

• Version of the Application

• Environment

Release Manager

Build Server

WebSphere Deployment
Manager IHS

WAS

MQ

cluster/ds/jms

httpd.conf

qmgr/queue

httpd.conf
IHS

WAS

MQ

MQ

WAS

IHSIHS

WAS

MQ

cluster/ds/jms

httpd.conf

qmgr/queue

cluster/ds/jms

httpd.conf

qmgr/queue

cluster/ds/jms

qmgr/queue

Example deployment tool

Deploy Process is Application Centric

 Application central point for all configuration
(clusters, datasource, qcf’s, QMGR’s, Queues,
Web Servers, etc.)

 Each application has a single or group of
properties file for each technology it installs

 Binary runtimes need to be installed. ALL other
configuration is encapsulated in Build Package

 Need to cater for share components, such as
MQ, cell scope resources i.e.URL Providers,
etc.

Deploy Process
Install is split into three parts:

 Pre-install
o Set flag file on web server to bring service offline
o After application has quiesced stop middleware components

 Install
o Load reference data
o Configure WebSphere Application Server and install EAR
o Deploy HTTP configuration and static content
o Deployment MQ config. – QMGR, Queues, Topics, etc.

 Post install
o Start middleware components
o Running post-install unit tests
o Remove LB flags on web server

Deploy Process - Properties files

deplomentNodeHost.CellName.ClusterName.Application.py

deplomentNodeHost.CellName.ClusterName.Application.mq

deplomentNodeHost.CellName.ClusterName.Application.props

deplomentNodeHost.CellName.ClusterName.Application.ibmihs

deplomentNodeHost.CellName.ClusterName.Application.WebServer1.webconf

deplomentNodeHost.CellName.ClusterName.Application.WebServer2.webconf

deplomentNodeHost.CellName.ClusterName.Application.clients (J2EE Client)

deplomentNodeHost.CellName.ClusterName.Application.dtd

deplomentNodeHost.CellName.ClusterName.Application.cdm

Deploy Process – properties sample #1

General Variables
#---
appName = “SalesApplication"
appVersion = "1"
envIndentifier = SysInt01
portIndentifier = 190

#---
Application Server Related Variables
#---
serverName = “SalesCluster“ + envIndentifier
serverNode = “PrimaryAppServerNode"
cookieName = "JSESSIONID"
threadPoolMinSize = 10
threadPoolMaxSize = 50
minJVMHeapSize = 512
maxJVMHeapSize = 1024

Note: This need to match the node name given during installation of Deployment Manager.
sslTransportSettingNodeName = nodeName
Can be removed at a later point of time. Is not used at this moment

The state of the cluster or appserver after a restart of WebSphere
nodeRestartState = "running"
sleepForInstallDuration = 600
restartServerAfterInstall = "true"
forceSleepForInstall = "false“

Logging related settings
maxLogFileCount = 5
logRolloverSize = 2

Deploy Process – properties sample #2
Server security settings
asSecurityEnabled = "false"
asSecurityAppEnabled = "false"

Transaction settings
asTransactionLifetimeTimeout = 5
asTransactionClientInactivityTimeout = 5

WC_defaulthost_port = 10190
WC_defaulthost_secure_port = 11190
BOOTSTRAP_ADDRESS_port = 12190
SOAP_CONNECTOR_ADDRESS_port = 13190
SIB_ENDPOINT_ADDRESS_port = 14190
SIB_ENDPOINT_SECURE_ADDRESS_port = 15190
SIB_MQ_ENDPOINT_ADDRESS_port = 16190
SIB_MQ_ENDPOINT_SECURE_ADDRESS_port = 17190
SIP_DEFAULTHOST_port = 18190
SIP_DEFAULTHOST_SECURE_port = 19190

#---
httpServerNosecureTransportPortNo = 80
httpsCSSSprayerSecureTransportPort = 443

Cascading properties

wsadmin.sh –f genericWASFunctions.py –profile
profileDefaults.py –profile project.py –profile
deplomentNodeHost.CellName.ClusterName.Application.py

Wsadmin Taskinfo function

 Wsadmin function to describe resource
mappings in ear file:

 Example: AdminApp.taskInfo(earLocation,
"MapResRefToEJB")

 Abstracted to script to display all mappings

 Jacl format: displayMappings.sh
-displayJaclMappings <ear file>

 Jython format: displayMappings.sh –
displayJythonMappings <ear file>

Resource reference mapping 1 – Map EJB
references to their resources

Extract from Python properties file showing mapping EJB references to resources via
JNDI. |this is also output format from wasadmin.sh –displayJythonMappngs

###
Resource 1: Map Resource References to EJB Resources
###
#
Fields:- Module:EJB:URI:Resource Reference:Resource type:Target Resource JNDI

Name:Login configuration name:Properties:
#
res1_1 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",

"dmap/UIConfigCache", "com.ibm.websphere.cache.DistributedMap",
"cache/ui_config_IBANK_IntTst02", "", ""]

res1_2 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",
"FinancialTransactionProcessingWS", "java.net.URL",
"url/FinancialTransactionProcessingWS_IBANK_IntTst02", "", ""]

res1_3 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",
"AccountWS", "java.net.URL", “jdbc/Account_IBANK_IntTst02", "", ""]

…

Resource reference mapping 2 – Define resources
Python properties file extract showing two URL provider definitions.

#---
URL Provider 1 and URL Resource Related Variables
#---
urlpName_1 = "urlProvider_IBANK_IntTst02"
urlpStreamHandlerClassName_1 = "unused"
urlpProtocol_1 = "unused"
urlpScope_1 = "cell"
urlName_1 = "FinancialTransactionProcessingWS_IBANK_IntTst02"
urlJNDIName_1 = "url/"+urlName_1
urlDestination_1 = "http://10.200.142.55:97/PaymentProcessingServiceSO"

#---
URL Provider 2 and URL Resource Related Variables
#---
urlpName_2 = "urlProvider_IBANK_IntTst02"
urlpStreamHandlerClassName_2 = "unused"
urlpProtocol_2 = "unused"
urlpScope_2 = "cell"
urlName_2 = "Account_IBANK_IntTst02"
urlJNDIName_2 = "url/"+urlName_2
urlDestination_2 = "http://10.160.74.63:96/Account"

Environment Comparison / Cloning

 Comparison between environments

 Comparison of the same environment over time

 Provision environments from templates

 Environment cloning:
o Deployment Manager host and CellName
o Environment identifier – SysTst01, IntTst01, etc.
o Ports, ClusterName
o Backend resources – JDBC, JMS, URL Providers
o Memory, Pool sizes, Number of AppServers, etc.

Challenges
 Tools need to be comprehensive i.e.

WebShere deployment process needs to cater
for ALL your environments requirements

 Up front investment required

 Maintenance can be expensive

 New versions and products need to be
incorporated quickly

 Can become reliant on a small number of
individuals

Methodology #1

 Encapsulation of code, scripts / utilities and
properties into a single zip or tar

 Can be applied across a broad range of
technologies

o WebSphere using jython

o MQ using mqsc

o IBM IHS using shell

o Portal using jython and XMLAccess

o WebSphere Datapower using xmi

Methodology #2

Can be applied to many third party applications

 Chordiant

 BusinessObjects

 Group1 Doc1

 PegaRules

Bringing it all together

 Weekly rebuilds of test environments

 Code and configuration baselined together

 rollback will revert Code and configuration

 Disaster recovery

 Re-building / migrations

 Environment comparison i.e. dev1 and dev2

 Comparing environments over time

Bringing it all together
 Code and configuration baselined together

 Environments provisioned if they don’t exist

 Configuration introduced into environments

 Rollback will revert Code and configuration

 Disaster recovery

 Re-building / migrations / cloning

 Environment comparison i.e. dev1 and dev2

 Comparing environments over time

 Weekly rebuilds of test environments

 Full audit of code and configuration changes

	 Managing Change Across Complex WebSphere Enterprise Environments
	Objective
	Scope of seminar
	Version Control – Development area
	Sample Development area
	Version Control – Release Area
	Sample Release area
	How does the VCS relate to the build process?
	Sample Development Area
	Build Process #1
	Build Process #2
	Build a JAR file
	Build a WAR file
	Build an EAR file
	Build Process – benefits #1
	Build Process – benefits #2
	Versioning
	Slide 18
	Audit
	Example Audit
	Build Package
	Creating the Build Package
	Deployment Process
	Slide 24
	Example deployment tool
	Deploy Process is Application Centric
	Deploy Process
	Deploy Process - Properties files
	Deploy Process – properties sample #1
	Deploy Process – properties sample #2
	Cascading properties
	Wsadmin Taskinfo function
	Resource reference mapping 1 – Map EJB references to their resources
	Resource reference mapping 2 – Define resources
	Environment Comparison / Cloning
	Challenges
	Methodology #1
	Methodology #2
	Bringing it all together
	Slide 40
	Slide 41

