

Managing Change Across Complex WebSphere
Enterprise Environments

David Sayers
Richard Bettison

Objective

 Environment provision
 Introduce change into environments
 Consistent process for code deployments
 Comparison between environments
 Comparing and environment overtime
 Who, what, when?
 Self contained “super archive” that contains all code,

scripts and configuration to provision an entire
environment

 Efficiencies through self-service
 Speeding up the software development life-cycle
 Start to view middleware components more as

commodities

Scope of seminar

 Version Control System
o Development area
o Release area

 Common approach to versioning

 Build Process

 Build Package (input to deployment process)

 Environment Provisioning and Deployment
Process

Version Control – Development area

 Development area contains all the source
code

 Developers and administration team have
access to source

 Application build.xml reside here

Sample Development area
Salesapp_dev\

\applicationEARs

\database

\source

Version Control – Release Area

 Release area contains all the scripts and
properties files used for deployment.

 Only administration team have edit access.
Developers can view content.

 Shared resources are symlinks (in ClearCase /
svn) or IVY Repository if using ANT or in
POM.xml if Maven2

Sample Release area

Saleapp_release

\j2ee

\html

\mq

\scripts

\clients

How does the VCS relate to the build process?
 Build process is inextricably linked to standards in

place in version control system
 Developer work on the team stream(s)
 Developer delivers to the build stream
 Build initially on build stream. Successful builds are

delivered to the integration stream
 Re-built on integration stream
 Ensures only successful builds are done on the

integration stream
 Build package is the output from Integration Stream
 Integration stream is baselined
 Baseline is then recommended

Development Stream(s)Build StreamIntegration Stream

Delivery

Delivery

Baseline

Sample Development Area

Build Process #1

Generic build framework of re-usable components
to perform all common tasks:

 buildJar
 buildWar
 buildEjb
 buildPortlet
 buildBusinessProcess
 buildEar

Build Process #2

 Application teams create and application
specific build.xml file that calls generic build
targets

 Example xml
o buildJar

o buildJar

o buildWar

o buildEar

Build a JAR file

<target name="doCustomerBSJava_Project" depends="init,
generateFoundationJXS" description="Builds all the java code">

<ant antfile="${GENERICBUILD}" target=“buildJar">
<property name="project" value="${project}"/>
<property name="classpath" value="${classpath}"/>
<property name="component" value="CustomerBS"/>
<property name="sourceDir" value="$

{dir.java.src}/CustomerBS/src"/>
<property name="workingDir" value="${workingDir}"/>
<property name="workingDir.lib" value="$

{workingDir}/lib/${project.staging}/lib"/>
</ant>

</target>

Build a WAR file

<target name="buildWar_ProjectPortal" depends="init" description="Build
Project Portal War file">

 <ant antfile="${GENERICBUILD}" target=“buildWar">
 <property name="war.name" value="ProjectPortalWeb.war"/>
 <property name="component" value="ProjectPortalWeb"/>
 <property name="sourceDir" value="$

{dir.web.src}/ProjectPortalWeb/src"/>
 <property name="include" value="**/*"/>
 <property name="sourceDir.meta" value="$

{dir.web.src}/ProjectPortalWeb/WebContent"/>
 <property name="project" value="${project}"/>
 <property name="classpath" value="${classpath}:$

{classpathWAR}"/>
 <property name="workingDir" value="${workingDir}"/>
 </ant>

</target>

Build an EAR file

<ant antfile="${GENERICBUILD}" target=“buildEar">
<property name="sourceDir" value="${dir.ear.src}/$

{application.name}" />
<property name="sourceDir.jx" value="${dir.ear.src}/$

{application.name}" />
<property name="include" value="" />
<property name="excludeJars" value="" />
<property name="sourceDir.meta" value="${dir.ear.src}/$

{application.name}/META-INF" />
<property name="workingDir.meta" value="${workingDir.dist}/

META-INF" />
<property name="project" value="${project}" />
<property name="component" value="projectapplication" />
<property name="classpath" value="${classpath}" />
<property name="workingDir" value="${workingDir}" />

</ant>

Build Process – benefits #1

 Can change the implementation of Generic
Build and ALL application teams start using
this without having to make any changes

 Can add additional components to Generic
Build process that are immediately available to
all application teams

o E.g.: Recently added Agitar for code coverage.

 Enforce standard use of libraries: log4j, jms,
oracle, etc.

Build Process – benefits #2

 Application teams can still implement custom
build components if required

 Output of the build process is a the deployment
“Build Package”

 Optionally developers can own the build
process and abide by a contract to provide Build
Package in a specific format

Versioning

 Baseline / label in version control system
should be the only version required

 Standard approach
o MAJOR.MINOR.BUILD
o e.g. 03.02.001

 Common approach to versioning allows you
think your version control system , deployment
and runtime infrastructure

Versioning

Version used as an identifier in:
 Version Control System

 MANIFEST.MF

 Build package (super archive containing code and
deployment scripts / properties)

 Deployment tool

 Use of J2EE standard tags in MANIFEST
(Application-Version) the version is displayed in
SystemOut

Audit

Typically audit is carried out backwards – starting
at runtime environment

 Check version of deployed code in SystemOut
 Check deployment audit logs to see who / when

deployment happened
 May also want to code has been promoted through

the environments correctly
 Finally, may also want to perform some analysis on

version control system i.e. what is the difference
between this version of code and a previous one

Example Audit

Build Package
 So far we have focused on standard java / j2ee

modules
 Build Package is a superset of multiple j2ee modules

along with ALL the scripts and properties that allow
you to provision, configure and deploy to specific
target environments

 Build Package is the output from an application
build.xml plus the contents of the release area

 The combined package is base-lined, zipped or tarred
(depending on target) to provide a self-contained
archive that will provision an entire runtime
environment (clusters, web server, virtualhosts,
datasource, QCF, Queue destination, QMGR’s,
Queues, Topics, etc.) and installs code

dev_area \ application EARS
 \ database(s)
 \ source

release_area \ html
 \ J2EE
 \ clients

Baseline File: SALESAPP_BUILD_01_02_003

BUILD PACKAGE

SALESAPP_BUILD_01_02_003.tar

Creating the Build Package

Deployment Process

 The input to the deployment process is the
build package

 Self-contained archive that can be deployed
to any target environment. Only pre-requisite is
a binary install of target runtime (DM,
nodeagents, MQ, IHS, etc.)

 Build Package is pushed to local DM,
unpacked and installed using the scripts,
utilities and properties contained in the Build
Package (no scripts are required locally)

`

Implementation Manager selects:

• Application

• Version of the Application

• Environment

Release Manager

Build Server

WebSphere Deployment
Manager IHS

WAS

MQ

cluster/ds/jms

httpd.conf

qmgr/queue

httpd.conf
IHS

WAS

MQ

MQ

WAS

IHSIHS

WAS

MQ

cluster/ds/jms

httpd.conf

qmgr/queue

cluster/ds/jms

httpd.conf

qmgr/queue

cluster/ds/jms

qmgr/queue

Example deployment tool

Deploy Process is Application Centric

 Application central point for all configuration
(clusters, datasource, qcf’s, QMGR’s, Queues,
Web Servers, etc.)

 Each application has a single or group of
properties file for each technology it installs

 Binary runtimes need to be installed. ALL other
configuration is encapsulated in Build Package

 Need to cater for share components, such as
MQ, cell scope resources i.e.URL Providers,
etc.

Deploy Process
Install is split into three parts:

 Pre-install
o Set flag file on web server to bring service offline
o After application has quiesced stop middleware components

 Install
o Load reference data
o Configure WebSphere Application Server and install EAR
o Deploy HTTP configuration and static content
o Deployment MQ config. – QMGR, Queues, Topics, etc.

 Post install
o Start middleware components
o Running post-install unit tests
o Remove LB flags on web server

Deploy Process - Properties files

deplomentNodeHost.CellName.ClusterName.Application.py

deplomentNodeHost.CellName.ClusterName.Application.mq

deplomentNodeHost.CellName.ClusterName.Application.props

deplomentNodeHost.CellName.ClusterName.Application.ibmihs

deplomentNodeHost.CellName.ClusterName.Application.WebServer1.webconf

deplomentNodeHost.CellName.ClusterName.Application.WebServer2.webconf

deplomentNodeHost.CellName.ClusterName.Application.clients (J2EE Client)

deplomentNodeHost.CellName.ClusterName.Application.dtd

deplomentNodeHost.CellName.ClusterName.Application.cdm

Deploy Process – properties sample #1

General Variables
#---
appName = “SalesApplication"
appVersion = "1"
envIndentifier = SysInt01
portIndentifier = 190

#---
Application Server Related Variables
#---
serverName = “SalesCluster“ + envIndentifier
serverNode = “PrimaryAppServerNode"
cookieName = "JSESSIONID"
threadPoolMinSize = 10
threadPoolMaxSize = 50
minJVMHeapSize = 512
maxJVMHeapSize = 1024

Note: This need to match the node name given during installation of Deployment Manager.
sslTransportSettingNodeName = nodeName
Can be removed at a later point of time. Is not used at this moment

The state of the cluster or appserver after a restart of WebSphere
nodeRestartState = "running"
sleepForInstallDuration = 600
restartServerAfterInstall = "true"
forceSleepForInstall = "false“

Logging related settings
maxLogFileCount = 5
logRolloverSize = 2

Deploy Process – properties sample #2
Server security settings
asSecurityEnabled = "false"
asSecurityAppEnabled = "false"

Transaction settings
asTransactionLifetimeTimeout = 5
asTransactionClientInactivityTimeout = 5

WC_defaulthost_port = 10190
WC_defaulthost_secure_port = 11190
BOOTSTRAP_ADDRESS_port = 12190
SOAP_CONNECTOR_ADDRESS_port = 13190
SIB_ENDPOINT_ADDRESS_port = 14190
SIB_ENDPOINT_SECURE_ADDRESS_port = 15190
SIB_MQ_ENDPOINT_ADDRESS_port = 16190
SIB_MQ_ENDPOINT_SECURE_ADDRESS_port = 17190
SIP_DEFAULTHOST_port = 18190
SIP_DEFAULTHOST_SECURE_port = 19190

#---
httpServerNosecureTransportPortNo = 80
httpsCSSSprayerSecureTransportPort = 443

Cascading properties

wsadmin.sh –f genericWASFunctions.py –profile
profileDefaults.py –profile project.py –profile
deplomentNodeHost.CellName.ClusterName.Application.py

Wsadmin Taskinfo function

 Wsadmin function to describe resource
mappings in ear file:

 Example: AdminApp.taskInfo(earLocation,
"MapResRefToEJB")

 Abstracted to script to display all mappings

 Jacl format: displayMappings.sh
-displayJaclMappings <ear file>

 Jython format: displayMappings.sh –
displayJythonMappings <ear file>

Resource reference mapping 1 – Map EJB
references to their resources

Extract from Python properties file showing mapping EJB references to resources via
JNDI. |this is also output format from wasadmin.sh –displayJythonMappngs

###
Resource 1: Map Resource References to EJB Resources
###
#
Fields:- Module:EJB:URI:Resource Reference:Resource type:Target Resource JNDI

Name:Login configuration name:Properties:
#
res1_1 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",

"dmap/UIConfigCache", "com.ibm.websphere.cache.DistributedMap",
"cache/ui_config_IBANK_IntTst02", "", ""]

res1_2 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",
"FinancialTransactionProcessingWS", "java.net.URL",
"url/FinancialTransactionProcessingWS_IBANK_IntTst02", "", ""]

res1_3 = ["ProjectPortalWeb", "", "ProjectPortalWeb.war,WEB-INF/web.xml",
"AccountWS", "java.net.URL", “jdbc/Account_IBANK_IntTst02", "", ""]

…

Resource reference mapping 2 – Define resources
Python properties file extract showing two URL provider definitions.

#---
URL Provider 1 and URL Resource Related Variables
#---
urlpName_1 = "urlProvider_IBANK_IntTst02"
urlpStreamHandlerClassName_1 = "unused"
urlpProtocol_1 = "unused"
urlpScope_1 = "cell"
urlName_1 = "FinancialTransactionProcessingWS_IBANK_IntTst02"
urlJNDIName_1 = "url/"+urlName_1
urlDestination_1 = "http://10.200.142.55:97/PaymentProcessingServiceSO"

#---
URL Provider 2 and URL Resource Related Variables
#---
urlpName_2 = "urlProvider_IBANK_IntTst02"
urlpStreamHandlerClassName_2 = "unused"
urlpProtocol_2 = "unused"
urlpScope_2 = "cell"
urlName_2 = "Account_IBANK_IntTst02"
urlJNDIName_2 = "url/"+urlName_2
urlDestination_2 = "http://10.160.74.63:96/Account"

Environment Comparison / Cloning

 Comparison between environments

 Comparison of the same environment over time

 Provision environments from templates

 Environment cloning:
o Deployment Manager host and CellName
o Environment identifier – SysTst01, IntTst01, etc.
o Ports, ClusterName
o Backend resources – JDBC, JMS, URL Providers
o Memory, Pool sizes, Number of AppServers, etc.

Challenges
 Tools need to be comprehensive i.e.

WebShere deployment process needs to cater
for ALL your environments requirements

 Up front investment required

 Maintenance can be expensive

 New versions and products need to be
incorporated quickly

 Can become reliant on a small number of
individuals

Methodology #1

 Encapsulation of code, scripts / utilities and
properties into a single zip or tar

 Can be applied across a broad range of
technologies

o WebSphere using jython

o MQ using mqsc

o IBM IHS using shell

o Portal using jython and XMLAccess

o WebSphere Datapower using xmi

Methodology #2

Can be applied to many third party applications

 Chordiant

 BusinessObjects

 Group1 Doc1

 PegaRules

Bringing it all together

 Weekly rebuilds of test environments

 Code and configuration baselined together

 rollback will revert Code and configuration

 Disaster recovery

 Re-building / migrations

 Environment comparison i.e. dev1 and dev2

 Comparing environments over time

Bringing it all together
 Code and configuration baselined together

 Environments provisioned if they don’t exist

 Configuration introduced into environments

 Rollback will revert Code and configuration

 Disaster recovery

 Re-building / migrations / cloning

 Environment comparison i.e. dev1 and dev2

 Comparing environments over time

 Weekly rebuilds of test environments

 Full audit of code and configuration changes

	 Managing Change Across Complex WebSphere Enterprise Environments
	Objective
	Scope of seminar
	Version Control – Development area
	Sample Development area
	Version Control – Release Area
	Sample Release area
	How does the VCS relate to the build process?
	Sample Development Area
	Build Process #1
	Build Process #2
	Build a JAR file
	Build a WAR file
	Build an EAR file
	Build Process – benefits #1
	Build Process – benefits #2
	Versioning
	Slide 18
	Audit
	Example Audit
	Build Package
	Creating the Build Package
	Deployment Process
	Slide 24
	Example deployment tool
	Deploy Process is Application Centric
	Deploy Process
	Deploy Process - Properties files
	Deploy Process – properties sample #1
	Deploy Process – properties sample #2
	Cascading properties
	Wsadmin Taskinfo function
	Resource reference mapping 1 – Map EJB references to their resources
	Resource reference mapping 2 – Define resources
	Environment Comparison / Cloning
	Challenges
	Methodology #1
	Methodology #2
	Bringing it all together
	Slide 40
	Slide 41

