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Goals

 IBM and Java

 Explore the changing landscape of hardware and software influences

 Discuss the impact to Java runtime technology due to these changes

 Show how IBM is leading the way with these changes
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IBM and Java
 Java is critically important to IBM

– Provides fundamental infrastructure to IBM software portfolio
– Delivers standard development environment
– Enables cost effective multi platform support
– Delivered to Independent Software Vendors supporting IBM server platforms

 IBM is investing strategically in virtual machine technology
– Since Java 5.0, a single Java platform technology supports ME, SE and EE
– Technology base on which to delivery improved performance, reliability and serviceability

• Some IBM owned code (Virtual machine, JIT compiler, ...)
• Some open source code (Apache XML parser, Apache Core libraries, Zlib, ...)
• Some Sun licensed code (class libraries, tools, ...)

 Looking to engender accelerated and open innovation in runtime technologies
– Support for Eclipse, Apache (Harmony, XML, Derby, Geronimo, Tuscany)
– Broad participation of relevant standards bodies such as JCP and OSGi
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IBM Java – 2009 key initiatives
 Consumability

– Deliver value without complexity.
– Ensure that problems with our products can be addressed quickly, allowing customers to keep 

focus on their own business issues.
– Deliver a consistent model for solving customer problems.

 “Scaling Up” - Emerging hardware and applications
– Provide a Java implementation that can scale to the most demanding application needs.
– Exploit emerging hardware and software platforms while delivering industry leading 

performance.

 “Scaling Down” 
– A radically improved runtime in the areas of startup performance, memory footprint, 

configurability, isolation and security.
– Provide a scalable agile programming platform.

 Deterministic quality of service for the solution stack
– High throughput and guaranteed predictable performance for the full spectrum of real-time 

systems.

 Open innovation
– Accelerate rate and pace of innovation in the Java community through open source efforts 

such as Apache Harmony and Eclipse
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IBM Java technology – leading progress through innovation

 Through Java specifications
– Java 5.0 

• New Language features: autoboxing, enumerated types, generics, metadata, ...
– Java 6.0

• Performance Improvements, client web services support, ...
– Java 7.0

• Not yet defined, but likely
• Modularity, support for dynamic languages, improve ease of use for SWING, new IO APIs (NIO2), 

Java persistence API, JMX 2.0 and WS connection for JMX agents, language changes, ...

 Areas of IBM key focus areas
– Consumability
– Scaling up
– Scaling down
– Deterministic quality of service
– Open innovation

 Exploitation of advances in hardware and software
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Hardware – processor trends

 Transistor density
– increasing exponentially

 Clock speed, Power consumption, 
Performance / clock speed

– leveling off

Source:  Burton Smith, “Reinventing Computing”, Microsoft Manycore Workshop 2007
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Hardware – increasing number of cores

IBM Power6 Systems 
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Challenges of multi-core / many-core trends
 Multi-core selling point: “2x cores == 2x performance”

– Not strictly true, coordination of multiple CPUs has overhead
– Scaling to low count multi-core has been fairly successful
– Existing single-threaded applications gain some benefit from

multi-core aware dynamic runtimes

 Many-core (8+ cores) requires smarter software
– New programming techniques required to deliver scale effectively to application programmers
– High count multi-core can mean higher software overhead
– Potentially asymmetric designs such as Cell (1 PPE, 8 SPEs), GPUs
– Traditional managed runtimes often not well placed to exploit many-core architectures

 Java runtimes need to evolve
– Support for concurrency starts from the bottom up
– If the software you build on does not exploit concurrency...

IBM zSeries
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Hardware – memory

 Non-Uniform Memory Access (NUMA)
– Access time depends on location relative to processor
– Caches getting smaller, but faster

• L1 cache 64KB reachable in 4 cycles
• L2 cache  4MB reachable in 24 cycles
• L3 cache 32MB reachable in 160 cycles

– Data locality can have significant performance 
implications

• Commercial workloads measured spending 45%
of time on stalled memory requests

 Applications can hit a “Memory Wall”
– Relative distance between main memory and CPU 

increasing (1000x)
– Processor time cheap, memory access expensive

 Managed runtimes control object placement
– Design of standard libraries and code generation

need to be tuned to achieve data locality
– Application programmers have few

 tools to help with their object placement L2 caches
(yellow)

Cores (blue)
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Secondary effects of multi-core / many-core
 Machine consolidation

– Data centres increasing number of applications run in parallel on single physical machines
– Reduce costs of administration, utilities (cooling, water, electricity), real estate, ...

 Virtualization
– To the runtime, these may look like regular machines, but have different characteristics
– How can managed runtimes contribute to the savings potential?

 Simply running multiple copies of your application?
– No concept of shared code libraries or shared data
– Isolation required between multiple applications in same runtime

 Java heap size soon becomes a limiting factor
– Running multiple apps and app servers on a single 

machine often infeasible
– Apps hit the memory wall waiting for heap accesses
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Hardware – main memory growth

 Main memory getting larger
– 64-bit computing common place
– Java heaps allow for large number of individually addressable objects

 Flash memory drives appearing
– Blurring distinction between main memory and disk
– e.g. multiple 128Gb solid state drives (SSDs), low latency, fast read, slow write, low power 

consumption compared to HDD

 Applications regularly holding large databases in memory
– Aim to increase performance, but lots of read-only objects cluttering heap
– e.g. over 90% of (4G, 10Gig, 100Gig+) Java heap allocated is database
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Challenges of main memory growth trends

 Object addressing with long long pointers
– Referencing objects with 64-bits causes “object bloat”
– Decreased performance through sparse data and 

increased garbage collection frequency

 Garbage collection algorithms
– Designed with multi-megabyte heaps in mind
– Pause times going into minutes
– New approach required for today's 100's Gigabyte heaps

 Java heap is flat
– Programming model does not distinguish read-only and read-write objects
– No way to give hints to locality (other than usage patterns)
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IBM Java solutions – optimizing for multi-core

 Implementation parallelism
– Runtime uses multiple helper threads for JIT, GC, etc.
– synchronized lock acquisition highly optimized
– Automatic application deadlock detection
– IBM Lock Analyser for visualizing lock dynamics

 Application level parallelism is still hard
– Parallel programming idioms recognized by the JIT

• Use standard libraries e.g. JSR166 Concurrency Utilities
• Code for clarity before performance

– Research language “X10” adds parallel constructs to Java

 WebSphere Virtual enterprise
– Spread workloads across a pool of app servers
– Spread app servers across pool of hardware
– Seemless to the end user
– Optimize utilization and quality of service
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IBM Java solutions – optimizing memory usage

 Compressed Reference Technology
– Addresses stored as a sequence of 32-bit 

values
– Efficient bit-shifting algorithm

 Dramatic improvements in 64-bit performance

 Improvements in 64-bit memory usage
– Heap sizes up to 28GB with the same physical 

memory overhead as an equivalent 32-bit 
deployment

ftp://ftp.software.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf
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IBM Java solutions – optimizing memory usage

 Class and code sharing (-Xshareclasses)
– Transparent and dynamic
– Maintain isolated processes
– Share class data across JVM 

processes
• Applications  share read-only class data

– Share AoT JIT code
• Improve start-up performance
• Share JIT compiled code

– Available in IBM Java5 and Java6 
JDK’s

http://www.ibm.com/developerworks/library/j-sharedclasses/

– WebSphere instances are able to share non-changing class files amongst each other limiting 
the memory overhead of each JVM machine

– Typically for a base WebSphere install each JVM uses about 30MB less memory with shared 
classes on its process size
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IBM Java solutions – optimizing memory usage

 Diagnostic tools
– Visualization of Java heap
– Development and deployment decisions assisted by static and dynamic feedback

 GC research
– NUMA aware algorithms with parallel hierarchical copying
– Avoid moving large objects and read-heavy objects
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IBM Java solutions – green computing

 Increase MIPS per Watt
– Social, environmental, and economic impact
– Increasing impact on IBM software and hardware design
– IBM leads on industry benchmark SPECpower_ssj2008 (Last publication update:  Wed Jan 14 17:01:06 EST 2009)

 Consume less power when idle
– Leverage CPU / OS features to reduce energy consumption

 Maximize utilization when running
– Optimize software to accomplish more in fewer cycles
– Use Dynamic Voltage and Frequency Scaling 

 Avoid power hungry operations
– Garbage Collection

• Avoid moving memory and exploit memory locality
– Just In Time Compiler

• Generate energy conservation aware code
• Use processor binding to allow other cores to sleep

Smart
Infrastructure
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Application Trends – dynamic runtimes
 Mash-ups and Web2.0

– PHP estimated present on 20M+ web domains employing “LAMP” stack
– Simple syntax and dynamic typing encourage 

situational applications

 Mix Java and PHP assets and programmers
– Re-use frameworks, applications, extensions

 Same-process interaction between Java and PHP
– Inter-language calls without IPC overhead
– Data sharing without copies

 Benefit from vast investment in VM Technology
– JIT, memory management, ...
– Ongoing investment in Java RAS and tools

 JVM Dynamic languages community
– Java world embracing scripting languages such as Jruby, Jython, Groovy, Scala
– New bytecode invokedynamic scheduled for Java 7

• “JSR 292: Supporting Dynamically Typed Languages on the JavaTM Platform”
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Application Trends – modularity and right sized runtimes

 Modularity
– Java system components (JARs and DLLs) do not support multi-variant runtimes well
– Applications typically written to a particular deep stack and JAR extensions

• e.g. Java EE 5 on Java SE 6 with JUnit 4.5 JAR and json JAR and ...
• Leads to dependency management problems (akin to DLL hell)

– Modules provide versioned interfaces, dependencies, life-cycle management, ...
• Applications depend upon software assemblies of modules
• OSGi modules are compatible with regular JARs
• Apache Harmony has Java SE composed of ~30 OSGi modules

– Java standardization efforts in flux
• JSR 277 : The Java Module System
• JSR 291 : Dynamic Component Support for Java SE

 Right-sized runtimes
– Apply Java technology modules in new configurations
– Convergence of Java ME and Java SE technologies
– Assemblies suited to different application goals

• Embedded profile, server profile, batch processing, transaction based, multi-core aware, ...
• Different implementations of equivalent modules
• e.g. Google Android
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Application Trends – Deterministic Quality of Service

 Real-time Java technology
– Provide predictable runtime characteristics
– Deterministic quality of service (DQoS) to time sensitive applications

 If the software you are built on does not support DQoS ...

 Real-time stack
– Operating system
– JIT compiler
– Memory manager
– Class libraries

 IBM WebSphere Real Time
– RTOS required
– Unique GC algorithms
– Ahead of Time compilation
– Augmented class libraries
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Summary
 Hardware

– New architectures require fundamental software changes for exploitation
– Virtualization brings opportunities and challenges for managed runtimes
– IBM software and hardware engineers collaborate closely to create best of breed

 Software
– Java application programming hidden from increasing complexity
– Additional dynamic languages such as PHP running on VMs
– Growing complexity requires sophisticated visualization and diagnostics

 Environmental
– Principal costs of enterprise computing changing
– Social responsibility
– Efficiencies benefit applications and environment

 Future trends
– Reuse assets in new configurations
– New guaranteed levels of service extend programming paradigms
– IBM well positioned to define the future technology direction
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