
Java Technology Centre

© 2009 IBM Corporation

Reading the runes for Java runtimes
The latest IBM Java SDKs ... and beyond

Tim Ellison
tim_ellison@uk.ibm.com

Java Technology Centre

© 2009 IBM Corporation2 Mar 9, 2009

Goals

 IBM and Java

 Explore the changing landscape of hardware and software influences

 Discuss the impact to Java runtime technology due to these changes

 Show how IBM is leading the way with these changes

Java Technology Centre

© 2009 IBM Corporation3 Mar 9, 2009

IBM and Java
 Java is critically important to IBM

– Provides fundamental infrastructure to IBM software portfolio
– Delivers standard development environment
– Enables cost effective multi platform support
– Delivered to Independent Software Vendors supporting IBM server platforms

 IBM is investing strategically in virtual machine technology
– Since Java 5.0, a single Java platform technology supports ME, SE and EE
– Technology base on which to delivery improved performance, reliability and serviceability

• Some IBM owned code (Virtual machine, JIT compiler, ...)
• Some open source code (Apache XML parser, Apache Core libraries, Zlib, ...)
• Some Sun licensed code (class libraries, tools, ...)

 Looking to engender accelerated and open innovation in runtime technologies
– Support for Eclipse, Apache (Harmony, XML, Derby, Geronimo, Tuscany)
– Broad participation of relevant standards bodies such as JCP and OSGi

Java Technology Centre

© 2009 IBM Corporation4 Mar 9, 2009

IBM Java – 2009 key initiatives
 Consumability

– Deliver value without complexity.
– Ensure that problems with our products can be addressed quickly, allowing customers to keep

focus on their own business issues.
– Deliver a consistent model for solving customer problems.

 “Scaling Up” - Emerging hardware and applications
– Provide a Java implementation that can scale to the most demanding application needs.
– Exploit emerging hardware and software platforms while delivering industry leading

performance.

 “Scaling Down”
– A radically improved runtime in the areas of startup performance, memory footprint,

configurability, isolation and security.
– Provide a scalable agile programming platform.

 Deterministic quality of service for the solution stack
– High throughput and guaranteed predictable performance for the full spectrum of real-time

systems.

 Open innovation
– Accelerate rate and pace of innovation in the Java community through open source efforts

such as Apache Harmony and Eclipse

Java Technology Centre

© 2009 IBM Corporation5 Mar 9, 2009

IBM Java technology – leading progress through innovation

 Through Java specifications
– Java 5.0

• New Language features: autoboxing, enumerated types, generics, metadata, ...
– Java 6.0

• Performance Improvements, client web services support, ...
– Java 7.0

• Not yet defined, but likely
• Modularity, support for dynamic languages, improve ease of use for SWING, new IO APIs (NIO2),

Java persistence API, JMX 2.0 and WS connection for JMX agents, language changes, ...

 Areas of IBM key focus areas
– Consumability
– Scaling up
– Scaling down
– Deterministic quality of service
– Open innovation

 Exploitation of advances in hardware and software

Java Technology Centre

© 2009 IBM Corporation6 Mar 9, 2009

Hardware – processor trends

 Transistor density
– increasing exponentially

 Clock speed, Power consumption,
Performance / clock speed

– leveling off

Source: Burton Smith, “Reinventing Computing”, Microsoft Manycore Workshop 2007

Java Technology Centre

© 2009 IBM Corporation7 Mar 9, 2009

Hardware – increasing number of cores

IBM Power6 Systems

Java Technology Centre

© 2009 IBM Corporation8 Mar 9, 2009

Challenges of multi-core / many-core trends
 Multi-core selling point: “2x cores == 2x performance”

– Not strictly true, coordination of multiple CPUs has overhead
– Scaling to low count multi-core has been fairly successful
– Existing single-threaded applications gain some benefit from

multi-core aware dynamic runtimes

 Many-core (8+ cores) requires smarter software
– New programming techniques required to deliver scale effectively to application programmers
– High count multi-core can mean higher software overhead
– Potentially asymmetric designs such as Cell (1 PPE, 8 SPEs), GPUs
– Traditional managed runtimes often not well placed to exploit many-core architectures

 Java runtimes need to evolve
– Support for concurrency starts from the bottom up
– If the software you build on does not exploit concurrency...

IBM zSeries

Java Technology Centre

© 2009 IBM Corporation9 Mar 9, 2009

Hardware – memory

 Non-Uniform Memory Access (NUMA)
– Access time depends on location relative to processor
– Caches getting smaller, but faster

• L1 cache 64KB reachable in 4 cycles
• L2 cache 4MB reachable in 24 cycles
• L3 cache 32MB reachable in 160 cycles

– Data locality can have significant performance
implications

• Commercial workloads measured spending 45%
of time on stalled memory requests

 Applications can hit a “Memory Wall”
– Relative distance between main memory and CPU

increasing (1000x)
– Processor time cheap, memory access expensive

 Managed runtimes control object placement
– Design of standard libraries and code generation

need to be tuned to achieve data locality
– Application programmers have few

 tools to help with their object placement L2 caches
(yellow)

Cores (blue)

Java Technology Centre

© 2009 IBM Corporation10 Mar 9, 2009

Secondary effects of multi-core / many-core
 Machine consolidation

– Data centres increasing number of applications run in parallel on single physical machines
– Reduce costs of administration, utilities (cooling, water, electricity), real estate, ...

 Virtualization
– To the runtime, these may look like regular machines, but have different characteristics
– How can managed runtimes contribute to the savings potential?

 Simply running multiple copies of your application?
– No concept of shared code libraries or shared data
– Isolation required between multiple applications in same runtime

 Java heap size soon becomes a limiting factor
– Running multiple apps and app servers on a single

machine often infeasible
– Apps hit the memory wall waiting for heap accesses

Java Technology Centre

© 2009 IBM Corporation11 Mar 9, 2009

Hardware – main memory growth

 Main memory getting larger
– 64-bit computing common place
– Java heaps allow for large number of individually addressable objects

 Flash memory drives appearing
– Blurring distinction between main memory and disk
– e.g. multiple 128Gb solid state drives (SSDs), low latency, fast read, slow write, low power

consumption compared to HDD

 Applications regularly holding large databases in memory
– Aim to increase performance, but lots of read-only objects cluttering heap
– e.g. over 90% of (4G, 10Gig, 100Gig+) Java heap allocated is database

Java Technology Centre

© 2009 IBM Corporation12 Mar 9, 2009

Challenges of main memory growth trends

 Object addressing with long long pointers
– Referencing objects with 64-bits causes “object bloat”
– Decreased performance through sparse data and

increased garbage collection frequency

 Garbage collection algorithms
– Designed with multi-megabyte heaps in mind
– Pause times going into minutes
– New approach required for today's 100's Gigabyte heaps

 Java heap is flat
– Programming model does not distinguish read-only and read-write objects
– No way to give hints to locality (other than usage patterns)

Java Technology Centre

© 2009 IBM Corporation13 Mar 9, 2009

IBM Java solutions – optimizing for multi-core

 Implementation parallelism
– Runtime uses multiple helper threads for JIT, GC, etc.
– synchronized lock acquisition highly optimized
– Automatic application deadlock detection
– IBM Lock Analyser for visualizing lock dynamics

 Application level parallelism is still hard
– Parallel programming idioms recognized by the JIT

• Use standard libraries e.g. JSR166 Concurrency Utilities
• Code for clarity before performance

– Research language “X10” adds parallel constructs to Java

 WebSphere Virtual enterprise
– Spread workloads across a pool of app servers
– Spread app servers across pool of hardware
– Seemless to the end user
– Optimize utilization and quality of service

Java Technology Centre

© 2009 IBM Corporation14 Mar 9, 2009

IBM Java solutions – optimizing memory usage

 Compressed Reference Technology
– Addresses stored as a sequence of 32-bit

values
– Efficient bit-shifting algorithm

 Dramatic improvements in 64-bit performance

 Improvements in 64-bit memory usage
– Heap sizes up to 28GB with the same physical

memory overhead as an equivalent 32-bit
deployment

ftp://ftp.software.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf

Java Technology Centre

© 2009 IBM Corporation15 Mar 9, 2009

IBM Java solutions – optimizing memory usage

 Class and code sharing (-Xshareclasses)
– Transparent and dynamic
– Maintain isolated processes
– Share class data across JVM

processes
• Applications share read-only class data

– Share AoT JIT code
• Improve start-up performance
• Share JIT compiled code

– Available in IBM Java5 and Java6
JDK’s

http://www.ibm.com/developerworks/library/j-sharedclasses/

– WebSphere instances are able to share non-changing class files amongst each other limiting
the memory overhead of each JVM machine

– Typically for a base WebSphere install each JVM uses about 30MB less memory with shared
classes on its process size

-9

27

62

79

102

0

100

200

300

400

500

600

700

One Two Three Four Five

P
ro

ce
ss

 S
iz

e
(M

B
)

-20

0

20

40

60

80

100

120

M
em

or
y

S
av

ed
 (M

B
)

Shared Classes Enabled Clustered Server Memory Footprint (bytes)
Regular Clustered Server Memory Footprint (bytes)
Memory Saved with class sharing

Java Technology Centre

© 2009 IBM Corporation16 Mar 9, 2009

IBM Java solutions – optimizing memory usage

 Diagnostic tools
– Visualization of Java heap
– Development and deployment decisions assisted by static and dynamic feedback

 GC research
– NUMA aware algorithms with parallel hierarchical copying
– Avoid moving large objects and read-heavy objects

Java Technology Centre

© 2009 IBM Corporation17 Mar 9, 2009

IBM Java solutions – green computing

 Increase MIPS per Watt
– Social, environmental, and economic impact
– Increasing impact on IBM software and hardware design
– IBM leads on industry benchmark SPECpower_ssj2008 (Last publication update: Wed Jan 14 17:01:06 EST 2009)

 Consume less power when idle
– Leverage CPU / OS features to reduce energy consumption

 Maximize utilization when running
– Optimize software to accomplish more in fewer cycles
– Use Dynamic Voltage and Frequency Scaling

 Avoid power hungry operations
– Garbage Collection

• Avoid moving memory and exploit memory locality
– Just In Time Compiler

• Generate energy conservation aware code
• Use processor binding to allow other cores to sleep

Smart
Infrastructure

Java Technology Centre

© 2009 IBM Corporation18 Mar 9, 2009

Application Trends – dynamic runtimes
 Mash-ups and Web2.0

– PHP estimated present on 20M+ web domains employing “LAMP” stack
– Simple syntax and dynamic typing encourage

situational applications

 Mix Java and PHP assets and programmers
– Re-use frameworks, applications, extensions

 Same-process interaction between Java and PHP
– Inter-language calls without IPC overhead
– Data sharing without copies

 Benefit from vast investment in VM Technology
– JIT, memory management, ...
– Ongoing investment in Java RAS and tools

 JVM Dynamic languages community
– Java world embracing scripting languages such as Jruby, Jython, Groovy, Scala
– New bytecode invokedynamic scheduled for Java 7

• “JSR 292: Supporting Dynamically Typed Languages on the JavaTM Platform”

Java Technology Centre

© 2009 IBM Corporation19 Mar 9, 2009

Application Trends – modularity and right sized runtimes

 Modularity
– Java system components (JARs and DLLs) do not support multi-variant runtimes well
– Applications typically written to a particular deep stack and JAR extensions

• e.g. Java EE 5 on Java SE 6 with JUnit 4.5 JAR and json JAR and ...
• Leads to dependency management problems (akin to DLL hell)

– Modules provide versioned interfaces, dependencies, life-cycle management, ...
• Applications depend upon software assemblies of modules
• OSGi modules are compatible with regular JARs
• Apache Harmony has Java SE composed of ~30 OSGi modules

– Java standardization efforts in flux
• JSR 277 : The Java Module System
• JSR 291 : Dynamic Component Support for Java SE

 Right-sized runtimes
– Apply Java technology modules in new configurations
– Convergence of Java ME and Java SE technologies
– Assemblies suited to different application goals

• Embedded profile, server profile, batch processing, transaction based, multi-core aware, ...
• Different implementations of equivalent modules
• e.g. Google Android

Java Technology Centre

© 2009 IBM Corporation20 Mar 9, 2009

Application Trends – Deterministic Quality of Service

 Real-time Java technology
– Provide predictable runtime characteristics
– Deterministic quality of service (DQoS) to time sensitive applications

 If the software you are built on does not support DQoS ...

 Real-time stack
– Operating system
– JIT compiler
– Memory manager
– Class libraries

 IBM WebSphere Real Time
– RTOS required
– Unique GC algorithms
– Ahead of Time compilation
– Augmented class libraries

Java Technology Centre

© 2009 IBM Corporation21 Mar 9, 2009

Summary
 Hardware

– New architectures require fundamental software changes for exploitation
– Virtualization brings opportunities and challenges for managed runtimes
– IBM software and hardware engineers collaborate closely to create best of breed

 Software
– Java application programming hidden from increasing complexity
– Additional dynamic languages such as PHP running on VMs
– Growing complexity requires sophisticated visualization and diagnostics

 Environmental
– Principal costs of enterprise computing changing
– Social responsibility
– Efficiencies benefit applications and environment

 Future trends
– Reuse assets in new configurations
– New guaranteed levels of service extend programming paradigms
– IBM well positioned to define the future technology direction

Java Technology Centre

© 2009 IBM Corporation

Reading the runes for Java runtimes
The latest IBM Java SDKs ... and beyond

Tim Ellison
tim_ellison@uk.ibm.com

Java Technology Centre

© 2009 IBM Corporation23 Mar 9, 2009

© IBM Corporation 2009. All Rights Reserved.
The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant. While
efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without warranty of
any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this presentation or any
other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or representations from IBM
or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.
References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue
growth or other results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming
in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.
All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics may vary by customer.
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM
trademarks, see www.ibm.com/legal/copytrade.shtml
AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, OMEGAMON, OS/390, Parallel Sysplex, pureXML,
Rational, RCAF, Redbooks, Sametime, Smart SOA, System i, System i5, System z , Tivoli, WebSphere, and z/OS.
 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

file:///../../g lucidon/Impact 2007/Content Calls/www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

