
IBM Software Lab Services

© 2007 IBM Corporation

Developing Web 2.0 user interfaces with
iWidgets and the Dojo Toolkit

Martin Gale

Master Inventor, IBM Certified IT Specialist

IBM Software Lab Services, Hursley

IBM Software Lab Services

© 2007 IBM Corporation

The session will introduce the the IBM recommended
approach for developing Web 2.0 user interfaces

� The agenda for this session is:

– An introduction to Web 2.0 and the key IBM products in

the Web 2.0 space.

– The Dojo Toolkit and its core concepts.

– iWidget concepts and developing iWidgets for IBM

Mashup Center.

– Questions.

IBM Software Lab Services

© 2007 IBM Corporation

Web 2.0 builds on the solid underpinning of enterprise SOA

WEB 2.0
Componentized Interoperable

Modular Scaleable

IBM Software Lab Services

© 2007 IBM Corporation

Web 2.0 technologies provide simple mechanisms for rapid
(re)assembly of applications and new services

� Feeds – streams of information formatted to agreed
standards providing a regular stream of updates

� REST – simple prescriptions for service design that
increase the accessibility and re-usability of internet
services

� Widgets – interoperable and reusable user interface
components for flexible construction of the user
interface

� AJAX – simple technologies used cleverly to create
rich user interfaces that are rewarding to use in a
browser

� Mashups – applications consisting of services and
information that are rapidly assembled to meet
dynamic needs

accountPOST

IBM Software Lab Services

© 2007 IBM Corporation

IBM client strategy for Web 2.0

� Key themes for the IBM strategy for
Web 2.0 user interfaces are

– Open, standards-based

• W3C, DOM, CSS and JavaScript

– Leverage core browser
technology as the platform and
augment with AJAX frameworks

• Dojo Toolkit

� Accommodates proprietary third
party technology without mandating
wholesale adoption of a proprietary
runtime.

– Flash, Flex, Silverlight…

Web browser (Internet Explorer, Firefox)

Web page

iWidget

iWidget

iWidget

iWidget

Dojo
Widget

Dojo Widget

Flash

HTML/
CSS

Dojo
Toolkit

O
p
e
n
A
ja
x
 H
u
b

Dojo Widget

Applet

IBM Software Lab Services

© 2007 IBM Corporation

The Web 2.0 user interface evolution

�“Round tripping” provision of the user interface –

client/server interaction obvious to the user.

�User interface flow logic managed on the server.

�Application server primarily serves HTML pages.

�Reuse only within the application server

infrastructure.

�Smooth user experience – client/server interactions

achieved without a full page refresh.

�User interface flow logic managed on the client.

�Application server primarily serves data.

�Reuse through modular AJAX toolkits on the client

and RESTful services.

Traditional web interaction Web 2.0 AJAX interaction

IBM Software Lab Services

© 2007 IBM Corporation

An example of a modern JEE architecture for Web 2.0

WebSphere Application Server

Enterprise Application

JAX-RS

resource

RPC

bridge

JPA bean

EJB 3

session

bean

DB2

Legacy

system

Web browser (Internet Explorer, Firefox)

Web page

Dojo
Widget

Dojo
Widget

Dojo Toolkit

Page controller

XMLHttpRequest

IB
M
 H
T
T
P
 S
e
rv
e
r

REST/HTTP

XML

JSON

Dojo
Widget

IBM Software Lab Services

© 2007 IBM Corporation

What are AJAX frameworks and why do we need them?

� There are a number of challenges posed by the
browser environment including

– differences between browser brands

– lack of a consistent component/packaging model

– limitations of the standard HTML widgets

– extensions to UI behaviour always require
scripting

– lack of a natural separation of concerns between
presentation and data

� AJAX frameworks raise the level of abstraction above
the base HTML/JavaScript runtime.

� There are in the order of hundreds currently available
today, by and large through Open Source.

IBM Software Lab Services

© 2007 IBM Corporation

Introducing the Dojo Toolkit

� The Dojo Toolkit is IBM’s choice as best of
breed AJAX framework.

– Open source, freely available from
http://www.dojotoolkit.org

– Built on open web standards such as
HTML, JavaScript and CSS.

– Seeks to insulate the developer from
browser differences and quirks and
promote modular, open web UIs.

� Key features include:

– Extensible and flexible component model

– Allows declarative UI extensions

– Rich user interface components and
themes.

– Support for accessibility and
internationalisation.

IBM Software Lab Services

© 2007 IBM Corporation

Dojo Architecture

� Base

– Component model and packaging.

– Inheritance, dependencies and class model.

� Core

– Commonly used foundation services.

– XMLHTTPRequest Wrappers.

– Wipes/slides.

– Pub/sub event model.

� Dijit

– “Dojo” + “Widget” = “Dijit”

– Rich user interface widgets.

� DojoX

– New extensions to the framework.

– Charting.

– Rich data grids.

� Util
– A collection of Dojo utilities including

compression, math and offline storage.

IBM Software Lab Services

© 2007 IBM Corporation

<html>

<head>

…

<title>IBM Gauge Widget</title>

<style>

@import "./dojo/dijit/themes/tundra/tundra.css";

</style

<script type="text/javascript“

src="./dojo/dojo/dojo.js"></script>

<script language="JavaScript“>

dojo.require("ibm_gauge.widget.AnalogGauge");

</script>

…

</head>

<body>

…

<div dojoType="ibm_gauge.widget.AnalogGauge“

id="testGauge“

gaugeWidth="300“

gaugeHeight="200“

cx=“150”
cy=“175”

radius=“125”/>

…

</body>

dojo.provide("ibm_gauge.widget.AnalogGauge");

dojo.require("dojox.gfx");

dojo.require("ibm_gauge.widget._Gauge");

dojo.declare("ibm_gauge.widget.AnalogGauge",
ibm_gauge.widget._Gauge, {

…

constructor: function(args) {

this.id = args.id;

this.radius = args.radius;

},

…

postCreate: function() {

dojo.subscribe(

“ibm/widgets/gauge/”+this.id+”/set”,

this,

function(value) {

this.setGaugeValue(value);

dojo.publish(“events/changed”,

[value]);

)

}

)

}

…

});

HTML page (.html file) Dojo Widget class (.js file)

IBM Software Lab Services

© 2007 IBM Corporation

IBM Software Lab Services

© 2007 IBM Corporation

A more advanced sample

IBM Software Lab Services

© 2007 IBM Corporation

WebSphere Application Server Feature Pack for Web 2.0

JSON and HTTP Enablement

Simplifies Ajax and web 2.0 based

access to traditional web services,

Java objects and EJBs in the

application server

Ajax Client Runtime

Eases development of client side Ajax

code; based on Dojo, an open source

Javascript library

Publish and Subscribe Event Handling

Enables dynamic scenarios such as

streaming stock updates and real time

collaborative web applications

Ajax Proxy

Provides safe, reliable access to

Internet based services and mashups

from browser based Ajax applications

IBM $125.25 +$2.50… MSFT $43.75 -$1.50 …

EJBs POJOsServices

JMS Proxy

WebSphere

Application Server

IBM Software Lab Services

© 2007 IBM Corporation

WebSphere sMash
� WebSphere sMash is an Agile Web Application

Platform

– Architected around Dynamic Scripting, REST, Rich

Web Interfaces, AJAX, and Feeds

– Optimized for

• Speed

• Simplicity

• Agility

� Key Scenarios

– Composing, and “cobbling together” pre-existing

assets (PHP assets, services, feeds, code snippets)

using dynamic scripting languages and simple

consumption principles based on REST.

– Rapid development of dynamic web applications that

are assembled from enterprise assets and publicly

available APIs.

IBM Software Lab Services

© 2007 IBM Corporation

Business/IT challenges in the Web 2.0 world
N
u
m
b
e
r
o
f
u
s
e
rs
 p
e
r
a
p
p
li
c
a
ti
o
n

of applications

Backlog of

simple, tactical

applications.

Strategic, long-

term apps

(created by IT.)
� Lack of agility – IT can’t respond fast

enough to business requirements

� Spreadsheet “apps” hard to manage,

share, keep current

� Silo-ed, outdated information

Business Challenges

� IT is backlogged and suffering from

too many business requests

� Underground or “shadow” IT

� Security violations

� Loss of information

IT Challenges

IBM Software Lab Services

© 2007 IBM Corporation

What is a Mashup?

A “mashup” is a lightweight web application created by combining information or
capabilities from more than one existing source to deliver new functions & insights.

� Rapid creation (days
not months)

� Reuses existing
capabilities, but
delivers new functions
+ insights

� Requires limited to no
technical skills

� Often mixes internal
and external sources

IBM Software Lab Services

© 2007 IBM Corporation

IBM Mashup Center

� Create new applications by

reusing existing data and

services

� Unlock Enterprise, Web,

Personal and Departmental

Information

� Develop widgets from enterprise

systems

� Discover and share mashups,

widgets, feeds, and services

� Transform information into new

feeds

A comprehensive mashup platform, supporting line of business
assembly of simple, flexible, and dynamic web applications – with
the management, security, and governance capabilities IT requires

IBM Software Lab Services

© 2007 IBM Corporation19

InfoSphere MashupHub: unlock and

share web, departmental, personal

and enterprise information for use in

REST-style Web2.0 applications.

MashupHub includes visual tools for

transforming and re-mixing REST-

style feeds.

Common Catalog: Sharing &

discovery of mashable assets.

Lotus Mashups: Quickly and

easily create and assemble

mashups on-the-glass. Create

dynamic widgets.

IBM Mashup Center Components

Assembly

Centric

Information

Centric

IBM Software Lab Services

© 2007 IBM Corporation

Mashups build on top of AJAX frameworks to provide
coarse grained components for visualising data

� Flexible applications such as mashups bring together data

feeds with AJAX widgets that render the information in a

consumable form in a browser environment.

� The visualisation widgets must be sufficiently flexible and

“wireable” to adapt to different feeds and scenarios.

– A variety of different data feed sources and styles.

– A variety of different application scenarios.

� For the broadest choice, the mashup user should be able to

choose from feeds and widgets developed both in house and by

third parties.

� In order for these components to be consumed with the

minimum integration effort, a standard interface is required.

IBM Software Lab Services

© 2007 IBM Corporation

What are iWidgets?

� iWidget is IBM-developed standard to describe
reusable and configurable browser UI
components.

� An iWidget

– shares the page with other components.

– is usually designed to be wired to other
components on the page.

– is often constructed from finer-grained widgets
from a toolkit such as Dojo

� The iWidget specification builds on XML, web
standards and AJAX toolkits to define meta-data
describing

– modes of operation for the component (view,
edit)

– any application events emitted and consumed.

– configurable attributes understood by the
component.

� iWidgets are the application building blocks in
IBM Mashup Center

IBM Software Lab Services

© 2007 IBM Corporation

Components of an iWidget

� An iWidget is instantiated in a supporting iWidget
runtime environment e.g.

– IBM Mashup Center

– WebSphere Portal with the iWidget Portlet

� An iWidget typically consists of

– an XML meta-data descriptor and rendering
markup

– a JavaScript class called the iScope to provide
the programmatic logic for the widget such as

• responding to and emitting events from its
surrounding framework known as the
iContext.

• managing the lifecycle of the iWidget.

• application logic to underpin the user interface.

� At runtime, the iContext supplied to the iScope
by the runtime environment provides the means
for the iWidget instance to interact with its
surroundings such as

– a localised getElementById() method for
accessing UI elements.

– accessors for attributes defined for the specific
iWidget instance.

iScope

Dojo

Widget

Dojo

Widget

Dojo

Widget

iScope

Encapsulation

Dojo

Widget

Dojo

Widget

Dojo

Widget

Encapsulation

iContext

IBM Software Lab Services

© 2007 IBM Corporation

Components of the iWidget XML definition

� The XML definition describes the widget configuration with details such as

– the viewing modes the iWidget supports.

• view is the most commonly used mode and is the mode in which the iWidget displays its
UI.

• edit to modify settings about the iWidget.

• help to provide help to the user of the iWidget.

– References to any required resources such as JavaScript files or CSS style sheets.

• iWidgets often have at least one referenced resource which is the .JS file containing the
iScope class.

– Markup content for each of the required modes. This is the basic display logic for the
iWidget and can contain other widgets within it.

� The name of the JavaScript class implementing the programmatic logic for the widget
as the iScope.

<iw:iWidget

id="helloWorld“

xmlns:iw="http://www.ibm.com/xmlns/prod/iWidget">
<iw:content>

Hello World
</iw:content>

</iw:iWidget>

IBM Software Lab Services

© 2007 IBM Corporation

An example iWidget definition

<iw:iwidget id="samplewidget“ xmlns:iw=http://www.ibm.com/xmlns/prod/iWidget
iScope="lm.samplewidget“ allowInstanceContent="true“ supportedModes="view edit"
mode="view" lang="en">

<iw:resource uri="samplewidget.js" />
<iw:content mode="view">

<![CDATA[
<div id="container">Value: 0
</div>

]]>
</iw:content>
<iw:content mode="edit">

<![CDATA[
<div style="background-color: white; padding: 2px; border: solid #4078C2 1px;">

<table border="0">
<tr> <td colspan="2">

<h2>Data feed</h2>
</td>

</tr>
<tr><td>Poll interval (secs):</td>

<td><input id="pollInterval" size="5"></td>
</tr>
<tr><td colspan="2“ height="5"></td></tr>

</table>

<a href="javascript:iContext.iScope().cancel();"
id="_IWID_CONF_CANCEL" class="lotusAction">Cancel

<input id="_IWID_CONF_SAVE" title="Save settings"

class="lotusFormButton" style="margin-right:10px;"
type="button" value="Save" name="save"
onclick="iContext.iScope().saveParams();return false;"/>

</div>
]]>

</iw:content>
</iw:iwidget>

IBM Software Lab Services

© 2007 IBM Corporation

The iScope class

� In model-view-controller terms you can think of the
iScope JavaScript class as the controller for the
iWidget.

� The iScope orchestrates how the iWidget
responds to events, retrieves its data and
manipulates the UI.

� An iScope defines a set of standard lifecycle
events for an iWidget such as

– onLoad fired when the iWidget instance has
fully loaded.

– onView fired when the view mode has been
rendered.

– onEdit fired when the edit mode has been
rendered.

� The iScope also contains any event handlers for
the iWidget to react to events occurring within the
iContext.

– The handlers may be wired using the XML
descriptor.

iScope

view edit

Views

Feed

iC
o
n
te
x
t

IBM Software Lab Services

© 2007 IBM Corporation

Some snippets from a sample iScope class

onLoad: function() {

this.feedURL =

this.iContext.getiWidgetAttributes().

getItemValue("feedURL");

console.info("feedURL = "+this.feedURL);

this.domID = "_" +

this.iContext.widgetId + "_";

dojo.subscribe (

"events/"+this.domID+"/poll",

this, "pollForData");

}

onview: function() {

if (this.feedURL) {

console.info("Feed URL is

"+this.feedURL);

this.pollForData();

}

}

onedit: function() {

this.iContext.

getElementById("pollInterval").value =

this.pollInterval;

}

IBM Software Lab Services

© 2007 IBM Corporation

Core services provided by the iContext

� The iContext is the view of the iWidget instance context supplied at
runtime.

� The iContext provides two core mechanisms of co-ordination with other
iWidgets on the page.

– iEvents that can be propagated to and consumed by other
iWidgets depending on their capabilities.

– Shared state for the instance that can be interrogated or listened to
by other iWidgets.

� The iContext also provides a number of services to the iWidget instance
to facilitate participation in a shared page

– getElementById(), getElementByClass() for DOM
manipulation local to the iWidget.

– requires() for loading resources used by an iWidget, including
versioning and caching.

IBM Software Lab Services

© 2007 IBM Corporation

Packaging the iWidget for deployment in IBM Mashup
Center

� iWidgets can be deployed to IBM Mashup
Center in two ways.

– A standard JEE WAR file.

– An OSGi bundle.

� The WAR structure is augmented with two
additional configuration files for deployment
in the Mashup Center.

– A properties file indicating the context
root for the iWidget.

– A catalogue descriptor telling Mashup
Center the labelling and categorisation
for the iWidget in the catalog.

IBM Software Lab Services

© 2007 IBM Corporation

Deploying an iWidget in IBM Mashup Center

IBM Software Lab Services

© 2007 IBM Corporation

Any questions?

IBM Software Lab Services

© 2007 IBM Corporation

Thank you ☺

� e-mail

– martin_gale@uk.ibm.com

� Blog

– http://galem.wordpress.com

