WebSphere User Group

Real-time Java How to Avoid Unexpected Delays

Mike Fulton IBM Real-Time Technologies

Disclaimer

All statements regarding IBM's future plans, direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Such statements do not represent a commitment of future availability, content, performance or function of any products or features

Agenda

- IBM's perspective on real-time Java
- •WebSphere Real Time
- IBM's Full Real Time Offering
- More great technology from the lab
- •The road ahead

IBM's investment in Java

Java is building block for hundreds of IBM applications

- Provides a consistent 'operating system'
- Safe, efficient language for developing code
- Consistent, high quality tooling for all dev phases

Significant Performance work

- Heavy investment in JVM, GC, JIT, Class Lib
- Hardware ranges from MIPS,ARM,SH4 to x/p/zSeries
- JVM designed for easy target to new OS and HW

What does real-time mean?

real-time : <u>predictability of performance</u>

• *hard* : violation of timing constraints are hard failures

• *soft* : timing constraints are simply performance goals Constraints vary in magnitude (microseconds to seconds) Consequences of missing a timing constraint:

- from service level agreement miss (stock trading)
- to life in jeopardy (airplanes)

Real-fast is not real-time, but *Real-slow is not real-good* Need a balance between predictability and throughput

IBM's interest in real-time

Classical real-time systems are getting more complex

 Military, telecom, industrial, automotive, gaming <u>Real-time systems becoming part of enterprise IT</u>

- Sensor networks, Event processing
- Commercial systems have unpredictable performance
 - Service Level Agreement failures when overloaded

A need for a new way to build real-time systems

- Engineered for predictability and reliability
- Using the latest programming tools and techniques

Why Java?

A business advantage over C, C++, Ada

- Productivity from tools, portability, error checking, security
- Many skilled programmers available
- Massive community of ISVs
- Java has problems in real-time environments
 - Lazy class loading and initialization, dynamic compilation
 - Garbage collection, system-specific thread management

IBM has solved these problems

WebSphere Real Time

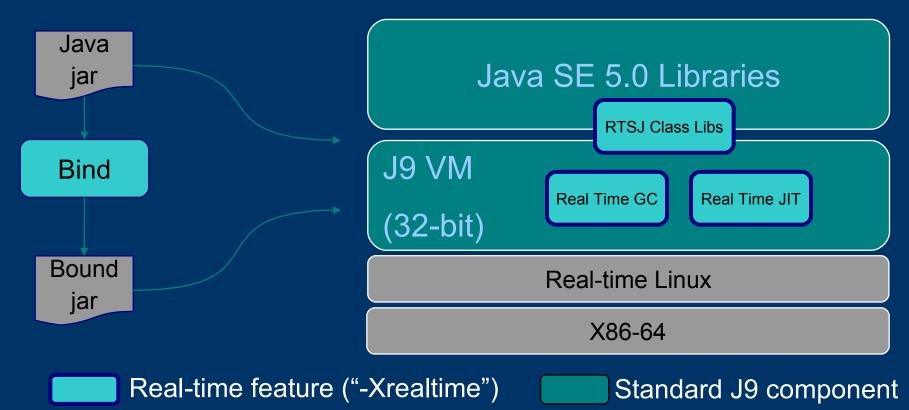
WebSphere Real Time (WRT) V1 is Generally Available

WRT is a Highly Predictable Java runtime:

- Real-time garbage collection
- Static and dynamic compilation
- Full support for RTSJ (JSR #1)
- Java SE 5.0 compliant
- Rigorously tested on Red Hat MRG & Novell SLERT
 using IBM xSeries hardware

Standards Compliance

IBM is committed to Industry Standards

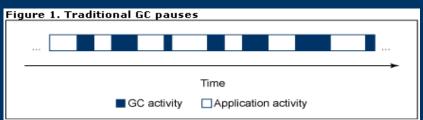

WebSphere Real Time JVM is fully Java SE 5.0 compliant

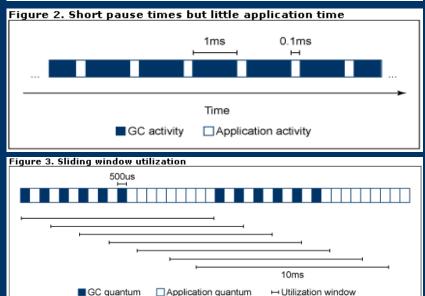
- Fully conformant JVM that runs on Real Time Linux
- The -Xrealtime option gives additional Real Time function

 Conformant to JSR #1: Real Time Specification for Java Java applications will run under WebSphere Real Time

- ... but will have more predictable performance
- ... and can be extended, where required, to use RTSJ

WRT architecture


Metronome Garbage Collection


• Unique technology from IBM R&D

- Garbage collection is scheduled as just another periodic real-time task
- Provides bounded pause times as small as 1ms and a minimum utilization level for application tasks
- Exploits RTOS hi-res timers and scheduling

• Enables the use of off-the-shelf Java code

- No need for specialized allocation schemes outside the Java heap
- Greatly simplifies real-time application development
- Enables complex real-time applications through easier composition

Compilation Strategies for Real Time

Compilation in J9 is dynamic by default

 High throughput, but JIT may not run early enough in non-realtime JVM to guarantee consistent performance

Multiple compilation choices with WRT:

- Ahead-of-time (AOT) (much better than interpreted performance)
- User-controlled JIT (faster than AOT, controlled via API)
- JIT-at-low-priority (best performance, runs on low priority thread)
- Tooling-controlled compilation as part of application start-up

Real Time Specification for Java (RTSJ)

Augments Java language to support building real-time systems

Thread scheduling

- "RealtimeThread" allows specification of scheduling parameters
- Used in conjunction with Metronome, low latency achieved with no change in programming model
- Fixed priority scheduling and additional priority settings
- Many event management services provided

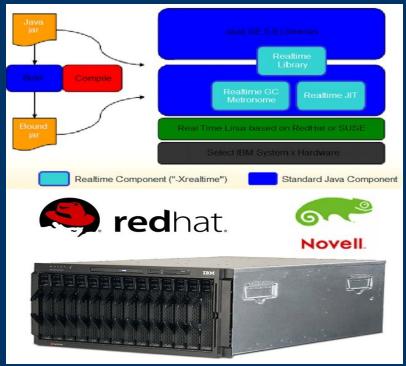
Memory Management

- Partitioned, non-garbage collected memory spaces
- No Heap Realtime Threads (NHRTs) can run independent of GC
- Very low latency achieved using standard RTSJ scoped memory techniques with NHRTs

IBM's Current Real-time Offering

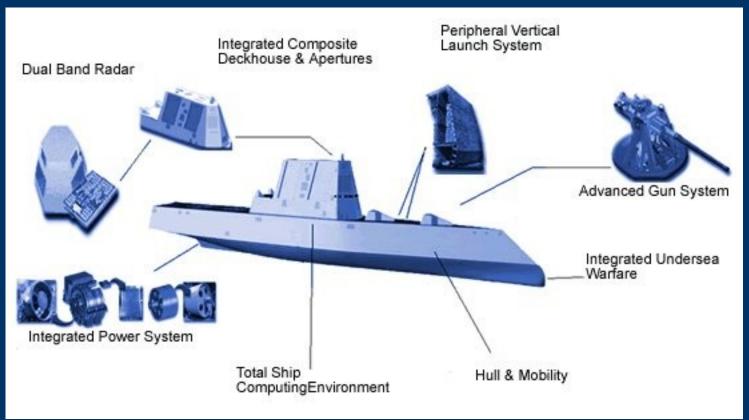
The Power of Java and Linux Combined to Deliver Real-time Capabilities

Select IBM Hardware


- LS21 and HS21XM xSeries blades
- Enhancements for real-time workloads

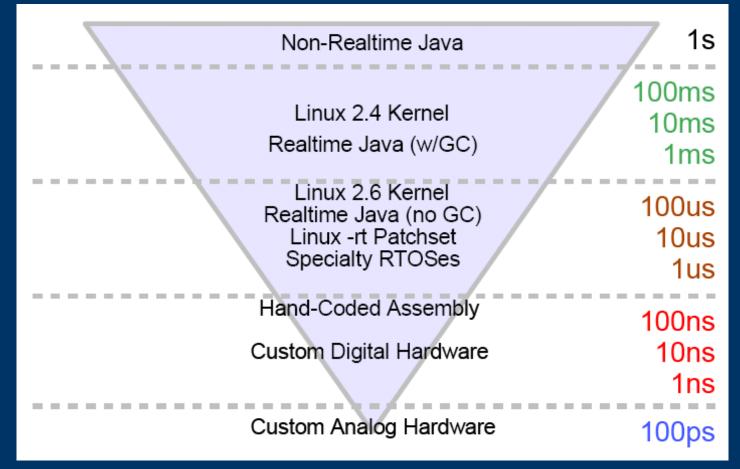
Real-Time Linux (RedHat MRG, Novell SLERT)

- High resolution time and timers


- Fully pre-emptible kernel Threaded interrupt handlers Priority inheritance & fast user-space mutexes Symmetric Multiprocessing (SMP) RT scheduling

- WebSphere® Real-Time (WRT)
 Java 2 Standard Edition & IBM J9 technology
 Real-Time Specification for Java (RTSJ: JSR 1)
 Metronome Garbage Collector (GC)
 Real-Time Compilation Strategies (AOT, JIT)

WRT V1 In The Real World


DDG 1000 Next Generation Navy Destroyers Developed with WRT on RT Linux

http://findarticles.com/p/articles/mi_pwwi/is_200702/ai_n17168257

http://www.raytheon.com/capabilities/products/zumwalt/index.html

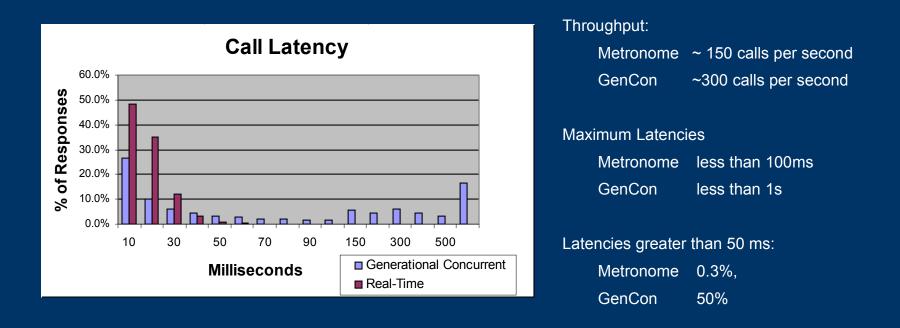
Real-time Capability Triangle

Updated from: SMP and Embedded Real-time (article in the Linux Journal)

by Paul McKenney (Distinguished Engineer, Linux Technology Center) http://www.linuxjournal.com/article/9361

WebSphere Real-Time V2

Development underway for WRT V2


- Continued support for the latest RTSJ (1.0.2)
- Continued support for the latest JSE (Java 6)
- Throughput/scalability improvements
 - Specifically in compilation and garbage collection
 - Exploitation of the largest xSeries blades
- Support for the latest xSeries blades, Red Hat and Novell RT distros
- Mixed AOT/JIT/Interpreter with shared classes
- *Soft* Real-Time Offering being added for Standard x86 Linux Distros
 - Available stand-alone and as part of WebSphere Virtual Enterprise
 - Provides Deterministic JVM without RTSJ for JSE 6 applications

Comparison of Different Garbage Collection Policies

- Traditional garbage collection requires a single Stop-the-World event
 - Stop-the-World: all Java threads stop to permit collection
- Generational Concurrent (GenCon) garbage collection
 - primarily shorter collections concurrent with application thread on multi-processor systems
 - very infrequent stop-the-world global collections, typically shorter than traditional garbage collection
- Metronome garbage collection guarantees maximum pause times with a minimum utilization
 - Utilization is processor time dedicated to the application
 - Shortest pause times, but may have greater performance impact

Traditional		
GenCon		Application
		Collector
Metronome		
	sliding window measures utilization	
	── Time →	

SIP (Session Initiation Protocol) Server Latency Real-Time GC Compared To Generational Concurrent GC

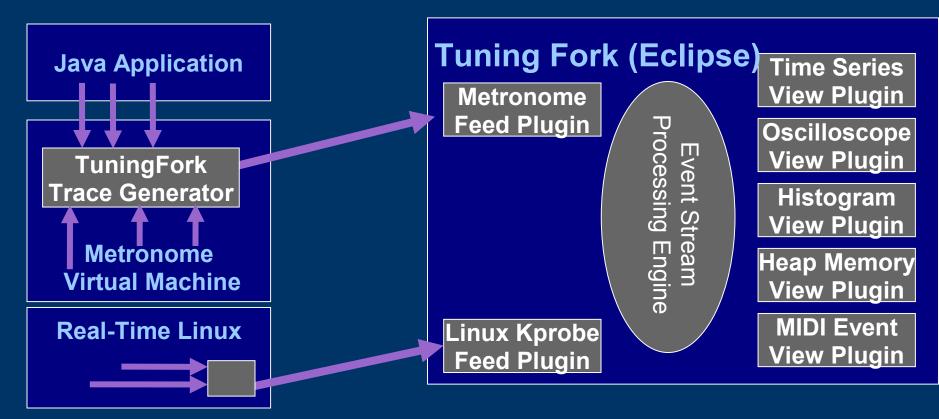
- Metronome trades off 50% performance capacity for a 98% reduction in average GC pause times, worst-case pause times and pause time variability
- Reduced pause times results in reduced latencies
- WRT V2 Throughput performance is significantly improved over these numbers
 - B2BUA benchmark on IBM HS21 blade server using the Websphere Real-Time for Linux early drivers compared to the IBM Java SE generational concurrent GC, both using ObjectGrid asynchronous replication. Latency values +- 0.03% error.

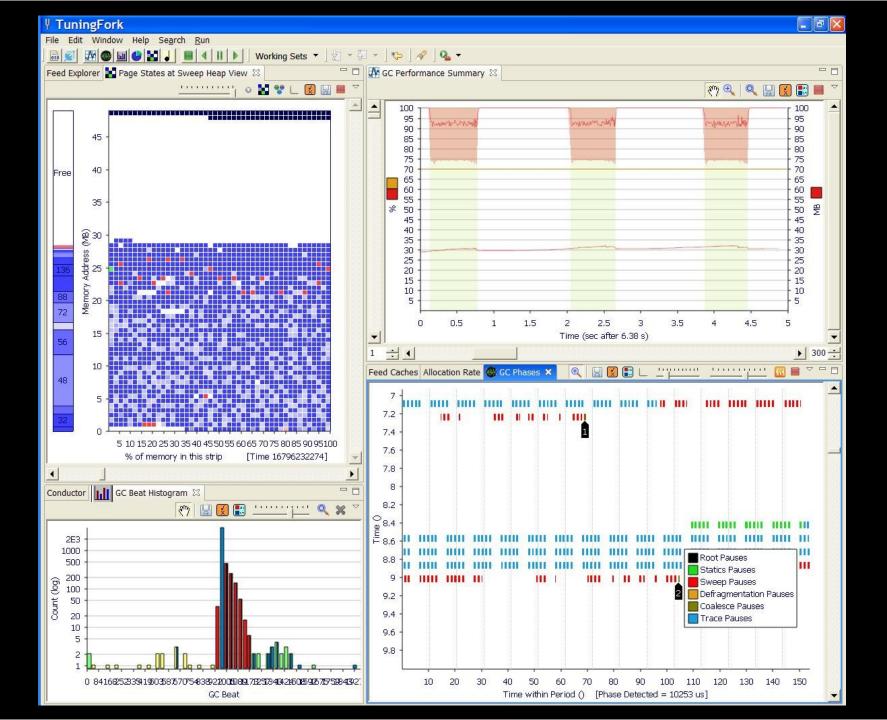
More great technology from the lab

Now we turn to our futures work...

*Tuning fork: Eclipse-based visualization of real-time systems
*Real-Time Class Analysis: Class pre-loading and pre-compilation analysis
*Expedited Real-Time Threads: A programming model for low latency tasks
*Application test beds: We're pushing the envelope with Real-Time Java

Tuning Fork


How do you debug a timing failure in a 25 MLOC application?


- How and when did the failure happen?
- Which component was responsible for the delay?

The Tuning Fork Project is investigating the production, consumption and visualization of high volume trace data

- JVM and Linux kernel instrumentation
- API for application level events
- Visualization and navigation of correlated event streams
- Available through alphaworks today

Tuning Fork Architecture

Real-Time Class Analysis

Critical regions must conform to rigid real-time constraints

Code must be pre-loaded and pre-initialized before use

• Performance critical code must be pre-compiled before use

Currently, these regions are verified by inspection and testing

• Time consuming, Error-prone, Hard to maintain

We developed automatic program analysis for this process

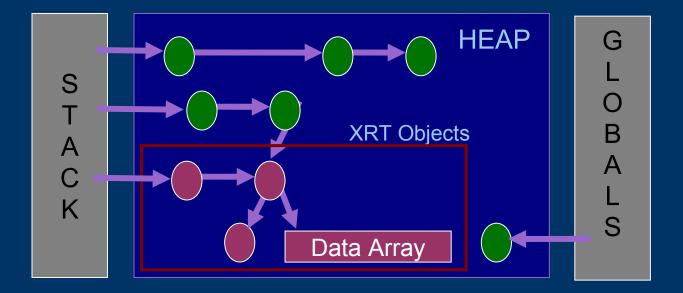
- All-paths static analysis of one or more code regions
 - Generates code to load, initialize and compile classes
 - Generates code to pre-compile these classes
- Available through alphaWorks today

Very Low Latency Events

There are limits to the latency for garbage collection

- Some work needs to get done, in every pause
- The limit will be >100µs on current hardware
- Some threads need to run at higher priority than GC

The RTSJ solution (NHRT) has serious problems


- Both reads and writes can fail ("safe SEGFAULT")
- Can be costly in performance (checking overhead)
- Presents problems for modularity (scoping rules)
- Architected storage leak (immortal memory)

Expedited Real-Time Threads

Some observations:

- The higher the frequency, the simpler the task
- Often do buffer processing just move data
- Expedited Real-Time Threads (XRT):
 - Data structures must be allocated in advance
 - Allocation done in the heap beside other data structures
 - Usually includes some buffers
 - XRT region definition verifies and locks down XRT objects

Expedited Real-Time Threads

Application test beds

P TuningFock	L ID X
	NE HARMAN A
L,	
	Portes 218 Toxis Openet 1
	- 100000000 - 1.00000000 - 1.000000000000000000000000000000000000
Neve Preserve	a the state of the
1723	
No. 16 14	AN A STATE A STATE OF AN AN AN
 With Turke manage features 12 	
a contraction	to the second
54	1 2 26 2 26
	t owners that the

100% Java MIDI Synthesizer1 ms (1KHz) timing for MIDI control (GC)44.1KHz for waveform synthesis (Eventrons)Joint work with Bohm Software

http://domino.research.ibm.com/comm/research_projects.nsf/pages/metronome.harmonicon.html

Air Java: Collaborating UAV Swarms Real-time but highly dynamic Software engineering complexity limiting innovation Focus on productivity + reliability and recovery *Joint work with UC Berkeley*

Autonomous Quad Rotor Helicopter 100% Java, 3ms control loop Goal is to validate Java in a critical physical control system *Joint work with University of Salzburg*

The road ahead

Standards

- JSR 282 (RTSJ 1.1) and JSR 302 (Safety-critical Java)
- RTSJ profiles with alternate memory managers

Technology

- Most vendors have real-time GC
 - differentiation will be based on quality, performance
- Static Compilation and deterministic dynamic compilation
- Tooling for real-time model, assemble, deploy, analyze
- Real-time Java on a broader range of hardware and OS's

Summing up: What makes WRT tick (and tock)?

J9 JVM technology

- IBM-authored virtual machine used in all IBM products and platforms
- Leadership performance, scalability and reliability

Optimizing compilation

- Static (aka ahead-of-time AOT) compilation for predictable performance
- Dynamic (aka just-in-time JIT) compilation for best performance (running on a low priority thread)

RTSJ

- Fully compliant to latest level
- Includes fixed priority scheduling, priority inheritance, asynchronous event handling, scoped and immortal memory management

Metronome

 Real-time garbage collection with 1ms worst case pause time

Linux

- RHEL MRG, SLERT
- Updated (open source) kernel and libraries engineered for real-time

Real-time Java Articles on developerWorks

http://www-128.ibm.com/developerworks/views/java/libraryview.jsp?search_by=Real+time+Java+Part

- Real-time Java, Part 1: Using the Java language for real-time systems
- Real-time Java, Part 2: Comparing compilation techniques
- Real-time Java, Part 3: Threading and synchronization
- Real-time Java, Part 4: Real-time garbage collection
- Real-time Java, Part 5: Writing and deploying real-time Java applications
- Real-time Java, Part 6: Simplifying real-time Java development