
Mike Fulton
IBM Real-Time Technologies

WebSphere User Group
Edinburgh

Real-time Java
How to Avoid Unexpected Delays

Disclaimer

All statements regarding IBM's future plans, direction
and intent are subject to change or withdrawal without
notice, and represent goals and objectives only. Such
statements do not represent a commitment of future
availability, content, performance or function of any

products or features.

Agenda

IBM’s perspective on real-time Java

WebSphere Real Time

IBM’s Full Real Time Offering

More great technology from the lab

The road ahead

IBM’s investment in Java

Java is building block for hundreds of IBM applications
 Provides a consistent ‘operating system’
 Safe, efficient language for developing code
 Consistent, high quality tooling for all dev phases

Significant Performance work
 Heavy investment in JVM, GC, JIT, Class Lib
 Hardware ranges from MIPS,ARM,SH4 to x/p/zSeries
 JVM designed for easy target to new OS and HW

What does real-time mean?

real-time : predictability of performance
 hard : violation of timing constraints are hard failures
 soft : timing constraints are simply performance goals

Constraints vary in magnitude (microseconds to seconds)
Consequences of missing a timing constraint:

 from service level agreement miss (stock trading)
 to life in jeopardy (airplanes)

Real-fast is not real-time, but Real-slow is not real-good
Need a balance between predictability and throughput

IBM's interest in real-time

Classical real-time systems are getting more complex
 Military, telecom, industrial, automotive, gaming

Real-time systems becoming part of enterprise IT
 Sensor networks, Event processing

Commercial systems have unpredictable performance
 Service Level Agreement failures when overloaded

A need for a new way to build real-time systems
 Engineered for predictability and reliability
 Using the latest programming tools and techniques

Why Java?

A business advantage over C, C++, Ada
 Productivity from tools, portability, error checking, security
 Many skilled programmers available
 Massive community of ISVs

Java has problems in real-time environments
 Lazy class loading and initialization, dynamic compilation
 Garbage collection, system-specific thread management

IBM has solved these problems

WebSphere Real Time

WebSphere Real Time (WRT) V1 is Generally Available

WRT is a Highly Predictable Java runtime:
 Real-time garbage collection
 Static and dynamic compilation
 Full support for RTSJ (JSR #1)
 Java SE 5.0 compliant
 Rigorously tested on Red Hat MRG & Novell SLERT

 using IBM xSeries hardware

Standards Compliance

IBM is committed to Industry Standards

WebSphere Real Time JVM is fully Java SE 5.0 compliant
 Fully conformant JVM that runs on Real Time Linux
 The -Xrealtime option gives additional Real Time function

 Conformant to JSR #1: Real Time Specification for Java
Java applications will run under WebSphere Real Time

 ... but will have more predictable performance
 ... and can be extended, where required, to use RTSJ

WRT architecture

Java
jar

J9 VM

(32-bit)

Java SE 5.0 Libraries

Real-time feature (“-Xrealtime”) Standard J9 component

X86-64

Real-time Linux

Bind

Bound
jar

RTSJ Class Libs

Real Time GC Real Time JIT

Metronome Garbage Collection

Unique technology from IBM R&D
 Garbage collection is scheduled as just another

periodic real-time task

 Provides bounded pause times as small as 1ms
and a minimum utilization level for application tasks

 Exploits RTOS hi-res timers and scheduling

Enables the use of off-the-shelf Java code
 No need for specialized allocation schemes outside

the Java heap

 Greatly simplifies real-time application development

 Enables complex real-time applications through
easier composition

Compilation Strategies for Real Time

Compilation in J9 is dynamic by default
 High throughput, but JIT may not run early enough in non-real-

time JVM to guarantee consistent performance

Multiple compilation choices with WRT:
 Ahead-of-time (AOT) (much better than interpreted performance)
 User-controlled JIT (faster than AOT, controlled via API)
 JIT-at-low-priority (best performance, runs on low priority thread)
 Tooling-controlled compilation as part of application start-up

Real Time Specification for Java (RTSJ)

Augments Java language to support building real-time systems

Thread scheduling
 “RealtimeThread” allows specification of scheduling parameters
 Used in conjunction with Metronome, low latency achieved with

no change in programming model
 Fixed priority scheduling and additional priority settings
 Many event management services provided

Memory Management
 Partitioned, non-garbage collected memory spaces
 No Heap Realtime Threads (NHRTs) can run independent of GC
 Very low latency achieved using standard RTSJ scoped memory

techniques with NHRTs

Select IBM Hardware
• LS21 and HS21XM xSeries blades
• Enhancements for real-time workloads

Real-Time Linux (RedHat MRG, Novell SLERT)
• High resolution time and timers
• Fully pre-emptible kernel
• Threaded interrupt handlers
• Priority inheritance & fast user-space mutexes
• Symmetric Multiprocessing (SMP) RT scheduling

WebSphere® Real-Time (WRT)
• Java 2 Standard Edition & IBM J9 technology
• Real-Time Specification for Java (RTSJ: JSR 1)
• Metronome Garbage Collector (GC)
• Real-Time Compilation Strategies (AOT, JIT)

IBM’s Current Real-time Offering
The Power of Java and Linux Combined to Deliver Real-time Capabilities

WRT V1 In The Real World
DDG 1000 Next Generation Navy Destroyers Developed with WRT on RT Linux

http://findarticles.com/p/articles/mi_pwwi/is_200702/ai_n17168257

http://www.raytheon.com/capabilities/products/zumwalt/index.html

http://findarticles.com/p/articles/mi_pwwi/is_200702/ai_n17168257

Real-time Capability Triangle

Updated from: SMP and Embedded Real-time (article in the Linux Journal)

by Paul McKenney (Distinguished Engineer, Linux Technology Center) http://www.linuxjournal.com/article/9361

http://www.linuxjournal.com/user/801277
http://www.linuxjournal.com/article/9361

WebSphere Real-Time V2

Development underway for WRT V2
• Continued support for the latest RTSJ (1.0.2)
• Continued support for the latest JSE (Java 6)
• Throughput/scalability improvements

• Specifically in compilation and garbage collection
• Exploitation of the largest xSeries blades

• Support for the latest xSeries blades, Red Hat and Novell RT distros
• Mixed AOT/JIT/Interpreter with shared classes

• Soft Real-Time Offering being added for Standard x86 Linux Distros
 Available stand-alone and as part of WebSphere Virtual Enterprise

 Provides Deterministic JVM without RTSJ for JSE 6 applications

Comparison of Different Garbage Collection Policies

• Traditional garbage collection requires a single Stop-the-World event
• Stop-the-World: all Java threads stop to permit collection

• Generational Concurrent (GenCon) garbage collection

• primarily shorter collections concurrent with application thread on multi-processor systems

• very infrequent stop-the-world global collections, typically shorter than traditional garbage collection

• Metronome garbage collection guarantees maximum pause times with a minimum utilization
• Utilization is processor time dedicated to the application
• Shortest pause times, but may have greater performance impact

Application

 Collector

 Time

Traditional

 GenCon

sliding window measures utilization

10ms

Metronome

SIP (Session Initiation Protocol) Server Latency
Real-Time GC Compared To Generational Concurrent GC

 Metronome trades off 50% performance capacity for a 98% reduction in
average GC pause times, worst-case pause times and pause time variability

 Reduced pause times results in reduced latencies
 WRT V2 Throughput performance is significantly improved over these numbers

 B2BUA benchmark on IBM HS21 blade server using the Websphere Real-Time for Linux early drivers compared to the IBM Java SE
generational concurrent GC, both using ObjectGrid asynchronous replication. Latency values +- 0.03% error.

Throughput:

Metronome ~ 150 calls per second

GenCon ~300 calls per second

Maximum Latencies

Metronome less than 100ms

GenCon less than 1s

Latencies greater than 50 ms:

Metronome 0.3%,

GenCon 50%

Call Latency

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

10 30 50 70 90 150 300 500

Milliseconds

%
 o

f
R

e
sp

o
n

s
es

Generational Concurrent

Real-Time

More great technology from the lab

Tuning fork: Eclipse-based visualization of real-time systems

Real-Time Class Analysis: Class pre-loading and pre-compilation analysis

Expedited Real-Time Threads: A programming model for low latency tasks

Application test beds: We're pushing the envelope with Real-Time Java

Now we turn to our futures work...

Tuning Fork

How do you debug a timing failure in a 25 MLOC application?
 How and when did the failure happen?
 Which component was responsible for the delay?

The Tuning Fork Project is investigating the production,
consumption and visualization of high volume trace data

 JVM and Linux kernel instrumentation
 API for application level events
 Visualization and navigation of correlated event streams
 Available through alphaworks today

Tuning Fork Architecture

Metronome
Feed Plugin

Linux Kprobe
Feed Plugin

Metronome
 Virtual Machine

TuningFork
Trace Generator

Java Application

Real-Time Linux

Time Series
View Plugin

Histogram
View Plugin

Heap Memory
View Plugin

MIDI Event
View Plugin

Oscilloscope
View Plugin

E
vent S

tream
P

rocessing E
ngine

Tuning Fork (Eclipse)

Real-Time Class Analysis

Critical regions must conform to rigid real-time constraints
 Code must be pre-loaded and pre-initialized before use
 Performance critical code must be pre-compiled before use

Currently, these regions are verified by inspection and testing
 Time consuming, Error-prone, Hard to maintain

We developed automatic program analysis for this process
 All-paths static analysis of one or more code regions

 Generates code to load, initialize and compile classes
 Generates code to pre-compile these classes

 Available through alphaWorks today

Very Low Latency Events

There are limits to the latency for garbage collection
 Some work needs to get done, in every pause
 The limit will be >100μs on current hardware
 Some threads need to run at higher priority than GC

The RTSJ solution (NHRT) has serious problems
 Both reads and writes can fail (“safe SEGFAULT”)
 Can be costly in performance (checking overhead)
 Presents problems for modularity (scoping rules)
 Architected storage leak (immortal memory)

Expedited Real-Time Threads

Some observations:
 The higher the frequency, the simpler the task
 Often do buffer processing – just move data

Expedited Real-Time Threads (XRT):
 Data structures must be allocated in advance

 Allocation done in the heap beside other data structures
 Usually includes some buffers
 XRT region definition verifies and locks down XRT objects

Expedited Real-Time Threads

S
T
A
C
K

Data Array

HEAP

XRT Objects

G
L
O
B
A
L
S

Application test beds

100% Java MIDI Synthesizer100% Java MIDI Synthesizer
1 ms (1KHz) timing for MIDI control (GC)
44.1KHz for waveform synthesis (Eventrons)
Joint work with Bohm Software

Air Java: Collaborating UAV Swarms
Real-time but highly dynamic

Software engineering complexity limiting innovation
Focus on productivity + reliability and recovery

Joint work with UC Berkeley

Autonomous Quad Rotor Helicopter
100% Java, 3ms control loop
Goal is to validate Java in a critical physical
control system
Joint work with University of Salzburg

http://domino.research.ibm.com/comm/research_projects.nsf/pages/metronome.harmonicon.html

The road ahead

Standards
 JSR 282 (RTSJ 1.1) and JSR 302 (Safety-critical Java)
 RTSJ profiles with alternate memory managers

Technology
 Most vendors have real-time GC

 differentiation will be based on quality, performance
 Static Compilation and deterministic dynamic compilation
 Tooling for real-time model, assemble, deploy, analyze
 Real-time Java on a broader range of hardware and OS's

Summing up: What makes WRT tick (and tock)?

J9 JVM technology
 IBM-authored virtual machine used in

all IBM products and platforms
 Leadership performance, scalability

and reliability

Optimizing compilation
 Static (aka ahead-of-time - AOT)

compilation for predictable
performance

 Dynamic (aka just-in-time - JIT)
compilation for best performance
(running on a low priority thread)

RTSJ
 Fully compliant to latest level
 Includes fixed priority scheduling,

priority inheritance, asynchronous
event handling, scoped and immortal
memory management

Metronome
 Real-time garbage collection with

1ms worst case pause time

Linux
 RHEL MRG, SLERT
 Updated (open source) kernel and

libraries engineered for real-time

Real-time Java Articles on developerWorks

 Real-time Java, Part 1: Using the Java language for real-time systems

 Real-time Java, Part 2: Comparing compilation techniques

 Real-time Java, Part 3: Threading and synchronization

 Real-time Java, Part 4: Real-time garbage collection

 Real-time Java, Part 5: Writing and deploying real-time Java applications

 Real-time Java, Part 6: Simplifying real-time Java development

http://www-128.ibm.com/developerworks/views/java/libraryview.jsp?search_by=Real+time+Java+Part

http://www.ibm.com/developerworks/java/library/j-rtj1/index.html?S_TACT=105AGX02&S_CMP=ART
http://www.ibm.com/developerworks/java/library/j-rtj2/index.html?S_TACT=105AGX02&S_CMP=ART
http://www.ibm.com/developerworks/java/library/j-rtj3/index.html?S_TACT=105AGX02&S_CMP=ART
http://www.ibm.com/developerworks/java/library/j-rtj4/index.html?S_TACT=105AGX02&S_CMP=ART
http://www.ibm.com/developerworks/java/library/j-rtj5/index.html?S_TACT=105AGX02&S_CMP=ART
http://www.ibm.com/developerworks/java/library/j-rtj6/index.html?S_TACT=105AGX02&S_CMP=ART

