
© 2008 IBM Corporation

WebSphere ESB Best Practices
WebSphere User Group, Edinburgh

17th September 2008

Andrew Ferrier, IBM Software Services for WebSphere 
andrew.ferrier@uk.ibm.com

Contributions from:
Russell Butek (butek@us.ibm.com) 
André Tost (andretost@us.ibm.com)



© 2008 IBM Corporation

Agenda

• Brief Refresher of WebSphere ESB
• ‘Large-scale’ Best Practices: Design and architecture
• ‘Small-scale’ Best Practices: Hints and tips to make 

your life easier
• References and Further Information



© 2008 IBM Corporation

Brief Refresher of WebSphere ESB



© 2008 IBM Corporation

What is WebSphere ESB?

• An ESB (Enterprise Service Bus) is an architectural 
pattern that assists in creating an SOA environment.

• Enables routing, transformation, augmentation, 
aggregation, etc. of services by creating 
intermediary services.

• WebSphere ESB is one of IBM’s three ESB 
‘products’.

Service
Consumers

Service
Providers

ESB



© 2008 IBM Corporation

WebSphere SOA/Process Integration Stack

WebSphere

Integration Developer

(tooling)

WebSphere Process 
Server

WebSphere ESB

WebSphere Application Server

Process 
Choreography, 
Business Logic

Message Transformation, 
Augmentation, Routing

J2EE Application 
Hosting, Supporting 

Services



© 2008 IBM Corporation

Mediation Module and Flow

• WPS adds Process (or Integration) modules.
• Mediation Modules can also contain Java Components.
• Mediation Modules can reference libraries that contain WSDLs, BOs, etc.

SCA Component (WSDL) Interface



© 2008 IBM Corporation

Types of Import and Export (Bindings)

• Web Services (SOAP/HTTP and SOAP/JMS)
• Messaging:

– WebSphere MQ and MQ / JMS
– JMS (incl. Generic)

• HTTP
• JCA (WebSphere) Adapters

– Application
– Technology

• SCA ‘Default’ / Native
• Stateless Session Bean Binding (import only)
• Standalone Reference (export only)
• WebSphere Business Integration Adapters



© 2008 IBM Corporation

Service Data Object (SDO)
• Java API used for 

accessing (mostly) 
structured data.

• Has serialized XML 
representation.

• Business Object is 
definition / type of SDO 
(underlying representation 
is XML Schema).

<customer>

<name>Fred</name>

<address>123 Anytown</address>

<date>1975-02-01</date>

<yearsACustomer>0</yearsACustomer>

</customer>

DataObject customer = createCustomer();

customer.setString(“name”, “Fred”);

customer.setString(“address”, “123 Anytown”);

customer.setDate(“dateOfBirth”, new Date(1975, 2, 1));

customer.setYearsACustomer(0);



© 2008 IBM Corporation

Service Message Object

• Only used inside 
mediation flows

• Contains context 
(scratchpads) for various 
mediation functions

• Gives access to headers
inaccessible in other SCA 
components

• As well as message body
content



© 2008 IBM Corporation

Large-scale best practices:
Design and architecture

• Use the Right Type of Module
• Design your System Topology
• Spend Time on Interfaces and Business Objects
• Consider How you Split up Mediation Modules
• Select your Binding Types Carefully
• Document Modules and Components
• Consider your Custom Coding Strategy
• Consider your Logging Strategy
• Use Source Control & Do Automated Builds
• Do Unit Testing



© 2008 IBM Corporation

Use the Right Type of Module

• Think about mediation logic vs. process logic.
• Use Mediation Modules (WebSphere ESB & Process 

Server) for integration / mediation logic:
– Short-running, minimal choreography.
– Supports header manipulation.

• Use (Integration) Modules (WebSphere Process Server 
only) for business / process logic:
– Can be long-running, powerful choreography and business logic.

• More Information:
– http://www.ibm.com/developerworks/websphere/library/techarticl

es/0803_fasbinder2/0803_fasbinder2.html



© 2008 IBM Corporation

Design your System Topology

• Need more than one server?
• Using clustering? For scalability? For failover? 
• Choice of topology – Bronze, Silver, Gold, …
• Mediation Modules on their own server?
• What databases do you need?
• Need a load balancer / HTTP server?
• What other systems are you connecting to and how will 

they ensure failover / scalability?
• DeveloperWorks article on clustering: 

http://www.ibm.com/developerworks/websphere/library/techarticles/0
803_chilanti/0803_chilanti.html

• Redbook that discusses production topologies: 
http://www.redbooks.ibm.com/abstracts/sg247413.html?Open



© 2008 IBM Corporation

Spend Time on Interfaces and 
Business Objects

• Refactoring support is limited 
inside mediation flows, so good 
to get this right first time round.

• Adopt a naming convention.
• Add constraints? 
• Add modelled faults?
• Think about namespaces.
• Configure default namespace 

policy before you start.



© 2008 IBM Corporation

Consider How you Split up Mediation 
Modules

• How many mediation flows inside each mediation flow 
component?
– Large number of modules impacts performance / deployment.

– Small number impacts ease of development.

• Remove unused library content.

Module A Module B

Library C

Module A

Library C

Application A Application B

Module B

Library C
build



© 2008 IBM Corporation

Select your Binding Types Carefully

• Often binding type dictated by circumstance.
• But if you have the scope to decide:

– Prefer SCA default/native for inter-ESB/WPS communications 
– fast, efficient, and simple

– Prefer Web Services for synchronous service exposure –
mature, integrates well into SDO model.

– Prefer JMS for asynchronous service exposure – integrates well 
with WAS platform. 

• Sometimes you have alternatives. For example:
– Web Services binding – allows easy access to SOAP headers 

or
– HTTP with SOAP data binding – allows access to HTTP 

headers but not SOAP headers



© 2008 IBM Corporation

Document Modules and Components (1/2)

• Specify description property to describe component in WID:

• As of WID 6.1.2, can also add notes:



© 2008 IBM Corporation

Document Modules and Components (2/2)
Can use ‘Generate Documentation’ to generate a full PDF describing your module:



© 2008 IBM Corporation

Consider your Custom Coding Strategy

• Custom mediation:
– Most useful for one-off coding.
– Cannot be re-used between modules.
– ‘Visual’ mode available which may be useful to those less 

comfortable with Java/SDO API.

• Custom primitive (also called roll-your-own primitive):
– A first-class new primitive – same abilities as any other primitive 

type (XSLT, Endpoint Lookup…).
– Can have customisable properties.
– Appears in palette in WID.
– More re-usable, but more work to create.



© 2008 IBM Corporation

Consider your Logging Strategy

• You will want one, consider it before you start 
developing.

• Options include:
– Message Logger – limited functionality – logs only to 

a fixed schema database table.
– JDBC or Flat File Adapter (in separate mediation 

module?)
– Custom mediations – basic visual snippets for 

logging.
– Custom primitives.



© 2008 IBM Corporation

Use Source Control & Do Automated Builds

• Use source control – WID/Eclipse integrates with 
several.

• Only one developer per mediation module at 
once.

• Automated build direct from source control.
– WebSphere ESB is supplied with the serviceDeploy

tool for this purpose.
• Article gives a good example of this process, 

integrate with Rational ClearCase:
– http://www.ibm.com/developerworks/websphere/librar

y/techarticles/0711_manekar/0711_manekar.html



© 2008 IBM Corporation

Do Unit Testing

• As of version 6.1, WebSphere 
Integration Developer has 
support for unit testing.

• Use it before check-in.
• Can be run from command line 

as part of automation.
• Article with more information:

– http://www.ibm.com/developer
works/websphere/library/techa
rticles/0806_gregory/0806_gre
gory.html



© 2008 IBM Corporation

‘Small-scale’ Best Practices:
Hints and tips to make your life easier

• Handle Modelled Faults
• Handle Unmodelled Faults where Appropriate
• Understand your Message Manipulation Choices
• Promote Properties where Relevant
• Use Visual Snippets in Custom Mediations
• Use Correct Message Context
• Understand the Synchronicity of Invocations
• Understand the Transactionality of Components
• Use Data Bindings (and Data Handlers) properly
• Use the Range of Debugging Tools Available



© 2008 IBM Corporation

Handle Modelled Faults

• a.k.a business or checked
• Don’t ignore them – consider them 

to be like declared faults in Java.
• Log it, then depending on nature 

of fault:
– Business level fault: pass it 

on
• Mediation does not 

include business logic
• Maybe do transformation

– Infrastructure level fault: 
Pass it on:
• Mediate into a generic 

fault for business logic
Or deal with it:
• Retry?



© 2008 IBM Corporation

Handle Unmodelled Faults where 
Appropriate

• Aren’t declared on an interface.
• a.k.a. system, runtime or unchecked.
• Appear at fail terminal of the callout 

node in the response flow
• Failure message found in SMO 

context.
• Useful where:

– Interacting with a system that 
throws runtime faults that you 
want to capture.

– Interacting with an interface that 
hasn’t declared faults, but should 
have. Façading approach: 
http://www.ibm.com/developerwo
rks/websphere/library/techarticles
/0802_lezajic/0802_lezajic.html



© 2008 IBM Corporation

Understand your Message 
Manipulation Choices

• Message Element Setter – simple, high performance. 
Cannot alter message type. Parts of element map are 
directly promotable.

• XSLT – prefer XSLT when you want to use XML 
functions or work with XSLT directly. Also more 
performant in some cases – such as when working 
with Web Services (but test performance!)

• BO Map – if want to share BO maps with WPS, or 
need/want ordering capabilities of the BO mapper:



© 2008 IBM Corporation

Promote Properties where Relevant

• Link them with the same name, where relevant, so that they can 
be changed together

• Be aware that there is a minor performance penalty so don’t 
promote with abandon, particularly where performance is a 
concern.



© 2008 IBM Corporation

Use Visual Snippets in Custom Mediations



© 2008 IBM Corporation

Use Correct Message Context

• Use Message Context area 
appropriate for inter-primitive 
communication:
– correlation – scratchpad for 

communicating between request 
and response flows.

– transient – scratchpad within a 
flow.

– primitiveContext/ 
FanOutContext – used when 
iterating using the Fan Out / In 
primitives.

– shared – used to aggregate 
responses from Service Invokes 
during a Fan Out / In.

• More information:
– http://www.ibm.com/developer

works/webservices/library/ws-
websphereesb3/index.html?ca
=drs-



© 2008 IBM Corporation

Understand the Synchronicity of Invocations

• Default ‘invocation style’ sometimes dictated by bindings.
• Often OK – but be aware of it. 
• Async interactions (between components or modules) go via an 

SCA queue. Implies:
– Breaking transactional scope
– Runtime exception, after retry limit, roll onto exception destination. 

Handling method depends on product:
• WPS has Failed Event Manager
• WESB needs an app/human to read errors from system exception 

destination, or exception destination to be disabled
• Can be hard to predict when interactions will be async – subtleties in 

performance optimisation, etc. Assume async if in doubt, and use 
‘preferredInteractionStyle’ liberally.

• More details here: 
http://www.ibm.com/developerworks/webservices/library/ws-sca-
patterns/index.html?ca=drs-



© 2008 IBM Corporation

Understand the Transactionality of 
Components

• Affects what happens when 
errors occur.

• If you are interacting with 
JDBC or a messaging system 
– probably want 
transactionality.

• Not the default.
• Use the new Transaction 

Highlighting and Qualifiers 
editor in WID 6.1.2.

• More information: 
http://soatipsntricks.wordpress.
com/2008/07/31/transactionalit
y-in-sca-part-2-refactoring-
interfaces/



© 2008 IBM Corporation

Use Data Bindings (and Data Handlers) 
properly

• Data Bindings (and Data Handlers) should be used on 
the boundaries of a set of modules to transform from 
and to proprietary formats.

• Don’t use the simple JMS and MQ bindings, then do the 
work of a data bindings in a mediation module:
– Unnecessarily complicates the flow
– Reduces opportunity for reuse with data handlers

• Only use the simple data bindings sparingly.



© 2008 IBM Corporation

Use the Range of Debugging Tools 
Available (1/2)

• Re-run your unit tests so you know what’s 
failing. 

• Review the content of application and server 
logs (such as SystemOut.log).
– Read the whole stack trace.
– Add more logging / increase logging levels.



© 2008 IBM Corporation

Use the Range of Debugging Tools 
Available (2/2)

• Use Component Test 
Client

• New fine-grained trace in 
WID 6.1.2

• Use Debugger
• Supports Breakpoints, 

Step Over, Inspection of 
SMO, etc.



© 2008 IBM Corporation

Large-scale best practices:
Design and architecture

• Use the Right Type of Module
• Design your System Topology
• Spend Time on Interfaces and Business Objects
• Consider How you Split up Mediation Modules
• Select your Binding Types Carefully
• Document Modules and Components
• Consider your Custom Coding Strategy
• Consider your Logging Strategy
• Use Source Control & Do Automated Builds
• Do Unit Testing



© 2008 IBM Corporation

‘Small-scale’ Best Practices:
Hints and tips to make your life easier

• Handle Modelled Faults
• Handle Unmodelled Faults where Appropriate
• Understand your Message Manipulation Choices
• Promote Properties where Relevant
• Use Visual Snippets in Custom Mediations
• Use Correct Message Context
• Understand the Synchronicity of Invocations
• Understand the Transactionality of Components
• Use Data Bindings (and Data Handlers) properly
• Use the Range of Debugging Tools Available



© 2008 IBM Corporation

References and Further Information

Andrew Ferrier
andrew.ferrier@uk.ibm.com

• InfoCenter: 
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp

• WebSphere ESB Support Site:
http://www-01.ibm.com/software/integration/wsesb/support/

• WebSphere ESB on DeveloperWorks: 
http://www.ibm.com/developerworks/websphere/zones/businessintegration/
wesb.html

• SOA Tips ‘n’ Tricks Blog:
http://soatipsntricks.wordpress.com/


