
IBM Software Services for WebSphere

© 2007 IBM Corporation

Matthew Perrins
Executive IT Specialist
Software Group Lab Services

Project Zero

Agenda
 Web SOA

- Attributes

- REST

- Extending Global SOA

 Project Zero

- Introducing Project Zero

- Project Zero Overview

- Core Programming Model

- RESTful Services

- Ajax

- Zero Assemble

 AIM Product Plans

- WebSphere Web 2.0 Feature Pack

- WebSphere MQ Bridge

- DataPower Web 2.0 Appliance

- Other: WebSphere Commerce

 Across the Brands

- Lotus: Community

 Mashup Maker, Portal, Quickr, Connections

Web SOA

Web SOA

 Web SOA is an instance of SOA that uses concepts from the Web as the

primary service architecture (WOA is an term from Gartner – we will use

“Web Extended SOA” for the same thing)

- REST to represent and access services

 Entities are addressed via URL

 GET, POST, PUT, DELETE are the actions

- Data is encoded as JSON or XML, and ATOM

- Rich User Interfaces built using AJAX

 Key aspects of building an effective Web Extended SOA

- UI runs in any commodity web-server / browser

- Make content simple and human readable

- Use well-established, ubiquitous technologies for scalability, performance and

security

Why a Web SOA

A Web Extended SOA (or “WOA”) is a SOA because a

SOA is an architecture for representing services

- A Web Extended SOA is just one implementation of a SOA where

the Web is the SOA platform

A Web Extended SOA extends the reach of your

enterprise SOA

- Putting services in the hands of the masses

U
s
a

g
e

Number of Applications

ERP

CRM

SCM

Sales analysis

Dashboards

SOA is pervasive

here
Web 2.0 applications

using SOA reach here

From dozens of markets of millions of users to

millions of markets of dozens of people

User created situational applications

IT created

situational

applications

Enterprise

applications

Simple to Access - Web 2.0 Applications Use SOA
To Serve New Markets with Specific Needs

What is a Mashup?
 A mashup is a web application that combines data or capabilities from more

than one source into an integrated experience

- Very popular on the consumer web, where over 3.45 new mashups/day are

appearing:

Zillow SeatSnapper

 What typically characterizes a mashup?

- Lightweight integration of applications (enables rapid development)

 “Widgets” that make up a mashup are often developed and deployed independently without
knowledge of each other

 Widgets can be mashed and wired together in the browser

- Utilize web technologies like HTTP, JSON, XML, Javascript, ATOM, RSS

- Often incorporates one or more public API and online services

- New applications deliver new insights and capabilities (1+1 = 4)

- Often, mashups can be customized by the end user

Pageflakes.com

Introducing Project Zero

Agility….
Project Zero

What is my

competition doing in a

specific customer

segment?

Stock Market data

Competitor customer references

Competitor product information

CRM Application

Finance Application

Product data

Motivation

 Enterprise Customers
- Problem: JEE and Integration products do more than some applications need

- Result: Movement to Open Source Solutions – e.g., Tomcat, Mule

- Opportunity: Leverage investment in Java, introduce agilie development via dynamic scripting
and assembly, that can be managed and run with enterprise qualities

 Mid-Market
- Problem: Current “Express” products are indeed Enterprise Software

- Result: Poor adoption, Movement to Open Source Solutions.

- Opportunity: Provide an architect OEM-able mid-market platform that enables the creation of
dynamic web applications and simple integration

 Hosting companies and hosted services
- Problem: Current IBM middleware is not designed for multi-tenancy or hosted scale

- Result: No adoption, LAMP, MySQL are the pervasive solution

- Opportunity : Provide a host-able platform, supports multi-tenancy, development environment
hosted as a service, applications hosted as a service

What is Project Zero?

Project Zero is an Agile Web Application

Platform.

- Architected around Dynamic Scripting, REST, Rich

Web Interfaces, AJAX, and Feeds.

- Optimized for speed of development, simple

deployment, and cost-effective operation.

Project Zero Overview

Innovations in Project Zero

 CREATE:

- Web-Oriented Programming Model

 ASSEMBLE:

- Simple Application and Service Assembly

 EXECUTE:

- “New Reality” Runtime

Create
 Simple Conventions to avoid excessive

code and configuration

 Dynamic Scripting and Templates

- PHP language syntax

- Groovy (Java Language Syntax)

- Java as System Programming Language

 Effortless creation of Restful Services and
Data Feeds (RSS, ATOM)

 Data Access using pureQuery

 Reactive Client integrated Dojo with Zero

 State externalized into a shared memory
space (Global Context)

 State-less, Event-driven architecture

 Catalog of Services and Libraries providing
useful building blocks

Languages and Scripting

 Zero is a dynamic scripting platform

 Application Logic is created in one of two scripting languges

- Groovy (for people that prefer Java)

- PHP

 Java is positioned as the “system” language

- Mostly used to implement system extensions and application
libraries

- Entire applications can be written in Java, if desired

 Requires more configuration

PHP Support

The Project Zero PHP runtime (P8) is built on top of IBM’s

J9 JVM

- Supports use of many PHP Extensions

XAPI-C interface allows C-based extensions

XAPI-J interface allows Java based extensions

- Supports bridging between Java and PHP

All of PHP is not supported

PHP runtime provided directly by Project Zero

The goal of P8 in Project Zero is to provide PHP support

within the Zero programming model

Application Centric Runtime

Project Zero is an application-centric runtime

- You create an application and run it

- You do not package an application and deploy it to a multi-

application server

- Each application runs in its own process (JVM)

- Runtime is designed to be short lived

Project Zero is a full stack runtime

- Everything needed to run the application is provided by Project Zero

 Including the HTTP stack

- No external proxy or web server is required

- An external proxy is used for clustering and multiapp routing

Modular Architecture

 Zero applications are based on a very small core

- 4.3 MBytes (includes Groovy).

- PHP adds additional 5 MBytes

- Core provides all of the Zero framework and runtime support, including HTTP transport

 Zero tools are provided separately

- Eclipse tools and Command Line tools are provided

- Both less than 4 MBytes

 Additional features provided in downloadable modules

- Applications declare a dependency on desired features (using Ivy)

- A package management system provides the ability to resolve those dependencies on the local

machine or pulls them from a remote catalog server

Assemble

 Composition of applications by
“wiring” REST services using
the SPLICE flows. Incorporating
both activity and data flows.

 A solution may be rapidly
assembled by combining existing
feeds and services that enrich,
sort, and filter data in a pipeline.
Either visually or
programmatically.

 Configure templates to alter
pipeline routes, log events along
the pipeline, as well as transform
data

 Adapters to enhance integration
with existing systems.

Execute: Runtime Charcateristices

 Desired traits

- Nimble - Instant On

- Clean - Graceful recovery, isolation, tolerates “bad” code

- Cheap - Cost effective to run in small and large quantities

 Supported on “stock” JVM

- IBM, Sun, Mac, etc - Any JSE 5 JVM

- Currently Zero takes about 1 second to start and consumes about 20 MBytes of

memory

 Working on a “new reality runtime”

- Modified JVM based on IBM J9 JVM

- Looking at sharing behavior and startup time

- Prototype shows startup times with an order of magnitude improvement and 2.4x

improvement in memory footprint

Core Programming Model

Events

 All behavior in the system is modeled as a set of event

- Applications are built by handling these events and providing desired behavior

- Similar to AJAX model or classic UI programming

Event Handlers
 All handlers are stateless

 Can be implemented in Groovy, PHP, and Java

Global Context – State Management

The Global Context (GC) provides access to and

management of all application state

- Conceptually a map of data

Externalizes all state from the application logic

- Enables the restartability of the JVM without data loss

- Enables clustering and scaling to be added transparently

Simplifies and unifies access to application state and data

structures and simplifies state passing within the

application

Contains information provided by both the runtime (such

as request parameters) and by the application

Global Context Zone
 Divided into 6 zones representing different data lifecycles

Accessing the Global Context
 Data is organized by a URI structure

- First part of URI is always the Zone name

 /app, /user, /request, /config, /event, /client

 Access is modeled after REST

- GET, PUT, POST, DELETE

Value Pathing

 The GC provides simplified access to certain data structures

- Called Value Pathing

 Understands

- Maps, List, Objects, XML, JSON

 Allows read and write access to internals of the structure through the GC

address

Application Directory Layout

Virtualized Directory
 Project Zero provides seamless integration of directories across an application and its

dependencies, while maintaining each as separate entities.

 All artifacts are searched within both the application and its declared dependencies

Configuration

 Zero configuration file:

zero.config

- The config/zero.config

file is processed at the

start of a Zero

application.

- The content of a

config/zero.config file is

organized into "stanzas"

of related key/value

pairs. Stanzas are

associated with

directives, such as "store

to the Global Context"

and "include another

configuration file.”

Rendering

Rendering

- Direct

- Indirect

RESTful Resources

RESTful Resources

Zero.data (powered by pureQuery)

 Full power of SQL

 Provides inline SQL directly from scripts

 Designed to allow straight SQL while simplifying common query patterns

- Result set access, output and formatting

- Parameter passing

- Paging, etc

Exposing Relational Data RESTfully

Zero Resource Manager
 Zero Resource Manager (ZRM) extension

provides a REST oriented view to data

 A layer of abstraction between the actual

data store and REST

- A constrained set of APIs that encourage

RESTful application architecture

- A data model that maps well to REST and

feeds

 Default top-down data mapping scheme &

automatic table creation

 First class support for accessing data in a

RESTful fashion both programmatically

and via HTTP

- Resources defined in the data model can be

accessed via HTTP with no manual coding

 First class support for accessing data as

feeds

 Robust frameworks for

- Persistence, validation, and serialization

Not an ORM

 Significantly constrained model from ORMs

- A data model that is geared towards REST rather than an arbitrary

POJO model

 No byte code weaving etc. object management magic needed

- A default top down mapping scheme rather than mapping an

arbitrary db schema to an arbitrary POJO model

 No mapping tools or annotations required

- No state maintained per user rather than a stateful POJO model

 No complex persistence engine needed to keep track of dirtiness

Resource Model

 The resource model is a collection of resource type definitions

- A resource type definition contains the definitions for fields, constraints,relationships, and

collections

 The resource type definitions

- Are datastore independent

- Default top-down mapping scheme for RDBs

- Can be shared across applications

- Can be created and manipulated either declaratively / programmatically or via

 HTTP

- Defined in a groovy script in /app/models

Rich Internet Applications

 Solidify model for simplifying the UI side

of a web application

- Service model, Dojo, Reactive Client,

Global Context and Events extended to the

browser

 GC/Events on the Browser

- Allows you to map a physical UI event to a

logical application event

- Can handle the application event on either

the server or in the browser

- The DOM of the browser is exposed via the

GC to the application on either side

Dojo Broswer Toolkit

 Dojo is an Open Source DHTML

toolkit written in JavaScript. It builds

on several contributed code bases.

- Provides Rich Set of Widgets

- Web UI Framework

- Rich Event handling System

- General Purpose HTML Libraries

- Several other utilities

- Math, XML to JS parsing, etc…

http://dojotoolkit.org/
http://dojo.jot.com/WikiHome/JavaScript

Dojo Architecture
 Base
- The kernel of the toolkit wrapped into a

25k js file (dojo.js). Base bootstraps the
toolkit, includes AJAX utilities, class based
inheritance, packaging system and more

 Core
- Provides addition facilities on top of the

base for accessing data stores, effects
such as wipes/slides, internationalization
(i18n) and back-button handling among
other things. Separate package keeps
base small

 Dijit
- Shorthand for "Dojo widget". Could refer

to a single Dojo widget (a dijit) or to the
entire component of the toolkit containing
all of Dojo's widgets (Dijit)

 DojoX
- “Dojo Experimental" and contains features

that stand a chance of one day migrating
into Core, Dijit or even a new module. A
great proving ground for new features
while maintaining standards of core and
base.

 Util
- A collection of Dojo utilities (more later)

Sample Dojo Widgets

Assemble

 Composition of applications by
“wiring” REST services using
the SPLICE flows. Incorporating
both activity and data flows.

 A solution may be rapidly
assembled by combining existing
feeds and services that enrich,
sort, and filter data in a pipeline.
Either visually or
programmatically.

 Configure templates to alter
pipeline routes, log events along
the pipeline, as well as transform
data

 Adapters to enhance integration
with existing systems.

Catalog of Content
 Data Formats

- JSON, XML, ATOM (including APP), RSS

 Flow Engine

- Feed and Control flows

 Accessing backend resources

- Data Zero, HTTP, Mail

 Presentation Components

- Dojo, Reactive Client, Web Flow, Templates

 Services and Widgets

- tagging, comments, ratings, blogs, profile,

news, reviews, ratings, polls, wiki pages,

Amazon (ECS, EC2, S3), Google, EBay

 Security

 Active Content Filtering, OpenID,

Authentication, Authorization, LTPA,

SSO, SSL

 Misc

 Apache mod_proxy config

 Zero Catalog Application

Community: http://www.projectzero.org

Zero Community

Experiment in a more transparent form of

commercial development

Community Driven Commercial

Development
 Community-Driven means that we want feedback, insight,

suggestions, criticism, and dialogue with the users of Project

Zero

 Commercial means that this is not an open source project. The

licensing is very liberal, but not completely open

 Development means that this community is about the technology

and how it is developed and evolves.

What is Available
 Wiki containing documentation, project information, roadmaps,

design documents, demos, samples, iCal calendar, future plans, etc

 Forum for interactive discussion

- Help and Feedback for questions from users

- Developer Alerts to notify users of new features and breaking changes

- Zero Development for publically accessible discussion amongst the Zero

development team

 Blogs for alerts and personal commentary

- Product blog

- Personal blogs of the project leaders

 Downloads

- Eclipse Tools, Command Line tools and Zero components

- Bug Tracking System (Bugzilla)

- Source code (Subversion)

 An online catalog of Zero extensions

- Soon to be open for user contributions

- Zero Alive! - online Zero playground

Other Resources

 Zero DeveloperWorks Space

 Web 2.0 and Middleware Blog

 Developer Works Articles

Web

Enterprise

REST
JSON

XML
RSS

ATOM

Legacy
CICS
IMS

J2EE

App Server
WAS, CE, Tomcat

WPS, ESB, Portal

SOAP
WS-* JMS

MOM

“Bridging Web and Enterprise SOA”

AJAX

DB2

Global SOA

 Exposing Enterprise Services to
the Web extends your enterprise
globally and simplifies:

- Development

- Composition of Services

- Deployment and accessibility

- QoS: Performance, Scale, Security

Enterprises are exposing more

services and feeds to the Web

…and consuming more services and

feeds from the Web

IBM $125.25 +$2.50… MSFT $43.75 -$1.50 …

Ajax Development Toolkit

A best-in-class Ajax development toolkit

for WebSphere Application Server

based on Dojo, an Open Source

JavaScript toolkit, with IBM extensions.

AJAX Messaging

A standardized publish/subscribe

messaging service for connecting Ajax

clients to frequently updated data like

stock quotes.Ajax

Proxy

WebSphere

Application Server

Service

Bus (JMS)

Web 2.0 to SOA Connectivity

For enabling connectivity from Ajax

clients to SOA services and other JEE

assets. Also extends enterprise data to

customers and partners through Web

feeds.

Extending SOA to rich Web 2.0 applications
WAS Web 2.0 Feature Pack

Web Feeds

Ajax Application

Event-Driven DataExternal Web Services JEE AssetsServices

http://www.amazon.com/ref=topnav_gw_gw/102-7174652-5413735
http://www.nasdaq.com/

Integrated Applications

J2EE

Web server

WebSphere MQBridge for HTTP

REST-based

Web services

• Easy access to

enterprise

applications and ESB

• Reliable delivery of

SOAP across MQ

backbone

• Pub/Sub distribution

No MQ client footprint
• Simplifies deployment and maintenance of

large scale distributed applications

No client applications

(PDA, mobile device)

AJAX

Web 2.0

HTTP

Queues Topics

New CustomerNew Customer
New_Customer

• Bridge for HTTP runs in a J2EE App Server
• Maps HTTP traffic to MQ queues and topics

Dynamic Web
applications

• Speeds and eases integration
of new Web apps with
enterprise applications and
data

• No MQ skills needed

Unlocking enterprise content simply
WebSphere MQ HTTP Bridge

Extend SOA simply and securely
WebSphere Datapower SOA Appliance

Enabled SOAP, JSON-RPC, REST,

and ATOM interfaces with no

changes to backing service

Extend backend SOA to Web 2.0
• Native monitoring, routing, logging & filtering
• Web 2.0 feed aggregation and centralized control
• Help Secure and Protect
• Quickly bridge between Web 2.0 and enterprise SOA

Dynamic customer
driven experience

Interactive AJAX
interfaces

Streamline purchasing
process

Simply transforming the Shopping Experience
WebSphere Commerce

http://www.o2online.ie/webapp/wcs/stores/servlet/O2CompareHandsetsView?storeId=10001&catalogId=10001&langId=-1&flowType=P&categoryId=10051&wcmArea=/wps/wcm/connect/O2/Home/Shop/Phones/Compare+phones/&wcmArea2=/wps/wcm/connect/O2/Home/Shop/Phones/Compare+p
http://www.hollisterco.com/webapp/wcs/stores/servlet/category1_10251_10201_12555_-1_12551
http://www.philosophy.com/web/store/cat_bath-shampooandshowergels____24026_23504

Lotus - Community

Lotus Mashup Maker

Business Users can create Mashups

AJAX based Client Side Aggregation in the Web Browser

Services created with Google Gadgets

Atom / RSS Feeds

REST-accessible Markup Fragments
from WP Portlets or any other URL

WSRP Services

Google Gadget Integration

 Enable customers to easily integrate Google
Gadgets into portal pages

From an end user perspective, Google
Gadgets integrated in WebSphere Portal
behave just like local portlets: viewable and
customizable like any local portlet

 If allowed by admin, users can drag Generic
Gadget Portlets on their pages and select
Gadgets to display from the Gadget Catalog
- Gadget Portlet initially lets user select the Gadget

to display from the Gadget Catalog
- Gadget Portlet then displays the selected Gadget
- User can view and customize the selected gadget

like any local portlet

 Administrators can pre-define Gadget Portlets
for the portlet palette
- Generic Gadget Portlet is pre-configured by the

admin to connect it to a certain gadget, e.g. an
admin could create a “Map Portlet” by creating a
Gadget Portlet and connecting it to the Google
Maps Gadget
- Users can then select such pre-configured Gadget

Portlets from the palette and drag them onto their
pages like any local portlet

AJAX Portlets using Dojo

Team Blogs
Keep a journal or blog of your meetings or creating discussions on different topics
effecting your team.

Wikis
A shared editing space that team members can use to create and manage
content such as designs, presentations, or other group material.

Team Calendar
Manage a community view of important events and activities that effect your
team.

Lists
Lists are simple “databases” of information such as tasks, announcements,
contacts, … that can be used to share information simply and quickly.

Content Sharing
Quickly share and manage documents, forms, images, or other media in content
libraries.

Lotus Quickr – Web 2.0 Collaboration
(see www.ibm.com/lotus/quickr)

http://www.ibm.com/lotus/quickr

Lotus Connections – Web 2.0 Social Networking
(see www.ibm.com/lotus/connections)

Communities
Create, find and join communities of people who share a common interest,
responsibility, or area of expertise

Blogs
Use a weblog to present your point of view and get feedback from others; read
what others are saying

Dogear
Save, organize and share bookmarks to valued online resources, discover
bookmarks that have been shared by others

Activities
Organize your work, plan next steps, and collaborate easily with
others to execute on your everyday deliverables

Profiles
Quickly find the people you need by searching across your organization using
keywords that help identify expertise, current projects and responsibilities

http://www.ibm.com/lotus/connections

Questions ?

