
2007 WebSphere User Group
September 11, 2007 • Edinburgh

W
eb

Spher
e

C
onfe

re
nce Technical

Services

2007

W
eb

Spher
e

C
onfe

re
nce Technical

Services

2007

Monty Jython's Scripting CircusMonty Jython's Scripting Circus

Andrew SimmsAndrew Simms
(ISSW UKISA, Andrew Simms/UK/IBM, simmsa@uk.ibm.com)(ISSW UKISA, Andrew Simms/UK/IBM, simmsa@uk.ibm.com)

2007 WebSphere User Group 2

ObjectivesObjectives

• Our Holy Grail: To work out some

recommended practices for using Jython

in WAS scripting

• How we're going to get there:

� Quick look at what's in the WAS 6.1
Application Server Toolkit (AST)

� Describe the essentials of the Jython
language

� Look at some more advanced Jython
features

� Pick out some key things as we proceed

� Demonstrate bit and pieces of Jython

� Suggest some guidelines for what scripts
should look like

2007 WebSphere User Group 3

It's: A short history of JythonIt's: A short history of Jython

• Python invented by Guido van

Rossum in 1991

� Operating system-independent

� Object-oriented

� Based on a language called
ABC

� Designed to be readable

� Named after the TV programme

� Small language core with
extensive libraries

• Jython is a Java implementation

of Python

� WAS 6.1's Jython is version 2.1

• Latest Jython is 2.2, Python 2.5

2007 WebSphere User Group 4

Jython programming in the ASTJython programming in the AST

• Purpose:

� To greatly ease wsadmin scripting

• by simplifying the development of Jython scripts

� using the Jython Editor

• by simplifying debugging Jython scripts

� using the Jython Debugger

• by generating scriptlets

� using the Admin Console Command Assist feature

• by converting existing Jacl scripts to Jython

� using the Jacl2Jython conversion tool

2007 WebSphere User Group 5

Jython editor in the ASTJython editor in the AST

• Text editing (find, replace, indent, undo, etc)

• Syntax colouring

•wsadmin keyword & method assistance

� Keyword & method syntax detection and colouring

� Keyword & method code completion (including parameters)

� Keyword & method context assistance and flyover help

• Outline view (classes & methods & loops)

• Provides integration with Jython Debugger

• Has “self-evident” usage (Eclipse consistent)

• NO compiler parse errors, NO parameter type checks

2007 WebSphere User Group 6

Jython debugger in the ASTJython debugger in the AST

• Uses local server runtime(s) for wsadmin
execution

� Can target (compatible) remote servers (using
-host -port)

• Can run Jacl and Jython scripts

• But debugging is Jython only

� Local v6.1

� Breakpoints, step-over etc

� Variables view (cannot change variable contents)

� Stack frame view (variables reflect current level)

2007 WebSphere User Group 7

Command assistance in the ASTCommand assistance in the AST

• Command Assist View in AST can receive

configuration changes made via the Admin Console

� Some (not all) actions result in Jython commands being
generated

� Limited in 6.1 – maybe 10%

� Expect more in later releases

• Insert generated code into a script using the Jython

Editor script

� Will need further editing

2007 WebSphere User Group 8

Jacl2Jython utility from the ASTJacl2Jython utility from the AST

• Takes your Jacl scripts and converts them to Jython

� Typically does 95-98% code conversion

� Inserts problem warnings into the converted code

• The developer must then:

� Manually verify all of the preliminary conversion

� Modify some code to make it function as originally

intended

� Thoroughly test the resulting script

• Does it produce Jython code in a style you would

use if writing from scratch?

� Not if you want to use the OO features

2007 WebSphere User Group 9

Jython: Language essentialsJython: Language essentials

• Indentation and comments

• Statements

• Trapping exceptions

• Data types

• Strings, tuples and lists

• Dictionaries

• Functions (classless methods)

• Built-in functions

2007 WebSphere User Group 10

Indentation and commentsIndentation and comments

• It's an indented language

� No curly brackets

� Colon and indentation instead

• Comments: use # and anonymous string
literals:
This is a comment

'This is a comment'

"""This is a comment that spreads across many lines

between triple-quotes. So a good way to comment out

code is to use triple-quotes"""

Beware mixing tabs and

spaces

In interactive wsadmin you can't cut and

paste comments that spread over two or

more lines. Not a problem for the AST.

2007 WebSphere User Group 11

StatementsStatements

• Much more like Java than Jacl (Tcl)

• Statement syntax is Java-like:
for x in (1, 2, 3):

print "x=", x

else:

print "Counter-intuitive that this gets executed"

for z in (range(45, 55)):

if z == 50:

break

else:

print z

else:

print "Broke out so this won't get printed"

In interactive wsadmin make sure you

type the indentation correctly, and you

may need a blank line at the end of

blocks. Not a problem for the AST.

"else" here is a misnomer –

always executed unless you use

"break" to exit from the for loop

1

2007 WebSphere User Group 12

StatementsStatements

• Multiple assignments (Fibonacci series):
a, b = 0, 1

while b < 1000000:

print b

a, b = b, a+b

• Some other things:
del a,b

x = 1

x += 1 # No x++

assert x == 2

pass # no-op

This is actually a tuple

assignment as we shall

see later

2

2007 WebSphere User Group 13

try try …… except except …… else else …… finally finally ……

• Try/except/else:
try:

v = 1 / 0

except ArithmeticError:

print "You can't do that!"

except:

print "This is a catch-all"

else:

print "value = ", v

• Try/finally:
try:

doStuff

finally:

doCleanUpStuff

• Use raise to raise exceptions

"else" here: if you go to the

exceptions then the else doesn't

get executed; if you don't go to

the exceptions then it does get

executed

finally: always gets executed

and any exception re-raised

after it executes

2007 WebSphere User Group 14

Jython data classesJython data classes

• All data classes are dynamic:
s = "hi there" ; v = 42

type(v) # -> <jclass org.python.core.PyInteger at 658253628>

• Numeric types:

� Integer, long, float, complex

� Numeric objects are immutable:
id(v) # -> 791424812

v += 1

id(v) # -> 791818034

• Types are detected syntactically:
vi = 42 # -> Integer

vl = 42L # -> Long

vf = 42.1234 # -> Float

vc = 42+43j # -> Complex

Can use lower-case el – but don't

(indistinguishable from the number one)

Probably not much use in WAS scripting!

2007 WebSphere User Group 15

Sequences: Strings, tuples and listsSequences: Strings, tuples and lists

Square

brackets

Round

brackets

Quotes

Delimiter

l = ["one", "two", "three", "four"]

l[-1] # -> "four"

l[1:-2] # -> ['two']

l[0::2] # -> ['one', 'three']

YesAny kind of

object

Lists

t = ("one", "two", "three", "four")

t[1] # -> 'two'

t[:2] # -> ('one', 'two')

NoAny kind of

object

Tuples

s = "one two three four"

s[5] # indexing -> 'w'

s[5:9] # slicing -> 'wo t'

NoCharacter

data only

Strings

ExamplesMut-
able?

ContentsType

Think of a tuple as a

constant list, but you

can still change any

mutable element it

may have

Slicing and

indexing apply

to all

sequences

len() tells you the

sequence length
Use empty paired

delimiters to get an

empty sequence, e.g.
L=[]

2007 WebSphere User Group 16

Sequence mutabilitySequence mutability

• Strings are immutable:
s = "one two three four"

s[8:-1] = "buckle my shoe" # fails

• Tuples are immutable:
t = ("one", "two", "three", "four")

t[2:] = "buckle my shoe" # fails

• But lists are mutable:
l = ["one", "two", "three", "four"]

l[-2:] = "buckle my shoe"

print l # probably not what you wanted

l = ["one", "two", "three", "four"]

l[-2:] = ["buckle", "my", "shoe"]

print l # better

3

4

2007 WebSphere User Group 17

Sequences: StringsSequences: Strings

• Use single, double or triple quotes
• Reverse quotes (equivalent to the repr() function):

v = 42

s = `v / 6`

type(s) # s is the string '7' not the integer 7

s = int(s)

type(s) # now it is

• Some useful PyString methods:
capitalize(), endswith(), find(), isxxx(), join(), lower(),
rfind(), split(), splitlines(), startswith(), strip(), upper()

• join() converts a sequence to a string:
s1 = ":"

s2 = s1.join(["join", "with", "colons"]) # 'join:with:colons'

• split() converts a string to a list:
s2.split("i") # -> ['jo', 'n:w', 'th:colons']

2007 WebSphere User Group 18

Sequences: TuplesSequences: Tuples

• Contains references to any object type

• Those objects can be mutable but the tuple itself is

immutable

• No methods available for tuples

• Represented by round brackets but you don't have

to specify them

t = "one", "two", "three", "four"

t = ("one", "two", "three", "four")

t = (("one", "two", "three", "four"))

• Objects can be of different types:

t = ("one", 2, 3L, 4.0+5.0j)

Beware:
t=("one") is a string

You need a trailing comma:
t=("one",)

But do so for clarity

2007 WebSphere User Group 19

Sequences: ListsSequences: Lists

• Contains references to any object type
• The only sequence type that is mutable

• Represented by square brackets
l = ["one", 2, 3L, 4.0+5.0j]

• PyList methods:
append(), count(), extend(), index(), insert(), pop(),
remove(), reverse(), sort()

• Examples:
l.append(6.0E7) # appends one object to the list

l.count(60000000) # 1 (how often does the value occur)

l.extend([7, "eight"]) # appends a list to the list

l.index(4+5j) # 3 (the index of this value)

l.insert(3, 2.5) # inserts 2.5 in index 3

l.pop(1) # 2 (and removes it from the list)

l.remove(4+5j) # removes this value from the list

l.reverse() # reverses the list order

l.sort() # sorts the list (in some way)

Convert a list to a tuple with
list(seq)) and vice

versa with tuple(seq)

2007 WebSphere User Group 20

List comprehensionList comprehension

• A syntax that allows you to create one list from
another by applying a function or expression to
each member:

[expr for var1 in seq1 if test1 for var2 in seq2 if test2 . . .]

• Exploit this to set heap sizes for all of your app
servers in one line!

[AdminConfig.modify(x, [["initialHeapSize", 64],

["maximumHeapSize", 128]]) for x in

AdminConfig.list("JavaVirtualMachine").splitlines() if

x.find("nodeagent") == -1 and x.find("dmgr") == -1]

5

None of the Admin* functions
return a true Jython list.

14

14

2007 WebSphere User Group 21

Dictionaries (mapping objects)Dictionaries (mapping objects)

• Connects a set of immutable keys to a set of objects

• Enclose with curly brackets and colon- and comma-

separated values:

chineseLanguages = ["Mandarin Chinese", "Cantonese"]

indianLanguages = ["Hindi", "Urdu", "Gujarati"]

china = ["Beijing", 1316E6, chineseLanguages]

india = ["New Delhi", 1110E6, indianLanguages]

cdict = {"China": china, "India": india}

-> {'China': ['Beijing', 1.316E9, ['Mandarin Chinese',

'Cantonese']], 'India': ['New Delhi', 1.11E9, ['Hindi', 'Urdu',

'Gujarati']]}

Dictionaries are very useful
as we will see later

6

2007 WebSphere User Group 22

Dictionaries (mapping objects)Dictionaries (mapping objects)

• PyDictionary methods:
clear(), copy(), get(), has_key(), items(), keys(), popitem(),
setdefault(), update(), values()

• Examples:

cdict("England") = ["London", 4.8E7, ["Cockney", "Geordie",
"Sassenach"]]

cdict.update({"Scotland": ["Edinburgh", 1.0E7, ["English"]]})

cdict.get("India") # returns value if present

cdict.has_key("Egypt") # 0 (not present)

cdict.keys() # ['India', 'China', 'England']

cdict.items() # returns a list of tuples

cdict.popitem() # pops an item as a tuple

cdict.setdefault("Egypt") # appends a key pair if not present

cdict.values() # returns a list of values

copy=cdict.copy() # performs a shallow copy

del cdict["Egypt"] # deletes an entry

cdict.clear() # empties the dictionary

2007 WebSphere User Group 23

FunctionsFunctions

• Functions are methods defined outside a class
def myFunction(p1, p2, p3):

doSomeStuff

return whatever

• Can return multiple values
� A tuple is constructed

• Functions can be nested

• Functions can have attributes as well as variables:
def myFunction():

myFunction.attr1 = "bonjour"

attr2 = "hello"

myFunction()

myFunction.attr2 = "g'day"

Function names:

• Don't use underscores as

these have special meanings

• Don't use built-in function
names

This is really useful – not restricted
to returning a single value

attr2 is a local variable but attr1 is
available externally

This is a new attribute assigned
externally

7

2007 WebSphere User Group 24

Right room for an argumentRight room for an argument

• Positional, default values, variable args:
def myFunction(p1, p2="def", *p3, **p4):

print vars()

myFunction("abc")

myFunction("abc", "ghi", "jkl", "mno")

myFunction(p2="xyz", p1="uvw")

myFunction("a", "b", "c", "d", id1="e", id2="f")

Varargs: extra positional
args are passed as a tuple

Varargs: extra key-value args
are passed as a dictionary

This is a great way of keeping

a function's signature constant

yet allowing arbitrary
parameters to be passed to it

2007 WebSphere User Group 25

Doc stringsDoc strings

• Place an anonymous string literal after a
function definition. Its content becomes that
function’s doc string.

• Print its documentation using <name>.__doc__

def someFunction():

"""someFunction does something or other"""

pass

someFunction.__doc__ # -> someFunction does something or other

A Jython library becomes

self-documenting. Can see
this using the AST.

2007 WebSphere User Group 26

BuiltBuilt--in functionsin functions

• type() – type of an object:
• id() – identity of an object:

• Numeric functions:
hex(), oct(), abs(), ...

• Type conversions:
int(3.14159), tuple("abcd"), ...

• File handling:
open("/tmp/myFile", "r")

• Sequence generators:
range(3, 17, 2)

xrange(3, 1234567, 2)

• Class attributes:
� dot notation
� also: hasattr(), delattr(), getattr(), setattr()

• Many more

2007 WebSphere User Group 27

Jython: Classes and other advanced featuresJython: Classes and other advanced features

• Namespaces

• Functional programming

• Regular expressions

• Threads

• Modules and packages

• Classes

• Using Java in Jython

2007 WebSphere User Group 28

Namespaces: Bruces and new BrucesNamespaces: Bruces and new Bruces

• Static and statically nested

(lexical) scoping

• Static scoping:

� Two namespaces: locals

and globals
bruce = 1

def changeBruce():

global bruce

bruce = 10

bruce += 1

print bruce

changeBruce()

print bruce

Without the global and without

the assignment Jython treats this

as a new bruce. Error: bruce
isn't defined when incremented.

With this assignment but

without the global, Jython sees
this bruce as a new bruce

With the global we

only have one
bruce

2007 WebSphere User Group 29

Namespaces: Nested functionsNamespaces: Nested functions

• Statically nested scoping:

� Names used in outer functions are not visible in

the inner function without a special import
from __future__ import nested_scopes

def outer(x, y):

def inner(z):

if z > 0:

print z, y

inner(z-1)

inner(x)

outer(3, "bruce")

Jython's way of

introducing new
features

2007 WebSphere User Group 30

Functional programmingFunctional programming

• Create anonymous functions using lambda forms which have
expressions but no statements:

isLeapYear = lambda year: not (year % 400 and (year % 4 or not
year % 100))

print "2000 - ", isLeapYear(2000)

print "2007 - ", isLeapYear(2007)

print "2008 - ", isLeapYear(2008)

print "2100 - ", isLeapYear(2100)

• map iterates over sequences calling a function on each member:

map(lambda x: x*x, range(10))

map(lambda x,y: x>y and x-y or y-x, [1, 5, 8], [3, 1, 7])

-> [2, 4, 1]

Note that this
returns a function

9

2007 WebSphere User Group 31

Functional programmingFunctional programming

•filter iterates over a sequence returning a subset

of its values where the called function returns true:
set1 = range(0, 200, 7)

set2 = range(0, 200, 3)

filter(lambda x: x in set1, set2)

-> [0, 21, 42, 63, 84, 105, 126, 147, 168, 189]

•reduce computes a single value by applying a two-

arg function recursively:
reduce(lambda x, y: x+y, range(11))

2007 WebSphere User Group 32

Three ways of doing recursionThree ways of doing recursion

• Ordinary functions can be recursive:
def fact(x):

x = long(x)

if x == 0:

return 1

return x * fact(long(x-1))

• You can use an anonymous function:
fact = lambda num: num == 1 or num * fact(long(num-1))

• You can use the reduce() function, which eats a

sequence applying a recursive function to it:
fact = lambda num: num > 0 and

reduce(lambda x, y: long(x)*long(y), range(1, num + 1)) or 0

Ultimately breaks with stack
overflow, e.g. fact(1712)

Ditto

Doesn't break

2007 WebSphere User Group 33

Functional programming examples using Functional programming examples using

AdminConfig (1)AdminConfig (1)

• Test whether a name is a valid configurable object:
isValidType = lambda x: x in AdminConfig.types().splitlines()

isValidType("JavaVirtualMachine") # -> 1

isValidType("Garbage") # -> 0

• Set heap sizes for all of your app servers in one line

(as earlier):
map(lambda x:

AdminConfig.modify(x, [["initialHeapSize", 64],

["maximumHeapSize", 128]]),

filter(lambda x:

x.find("nodeagent") == -1 and x.find("dmgr") == -1,

AdminConfig.list("JavaVirtualMachine").splitlines()))

10

14

14

2007 WebSphere User Group 34

Functional programming examples using Functional programming examples using

AdminConfig (2)AdminConfig (2)

• Test whether some configurable type has a named attribute:
isAttribute = lambda x, type:

isValidType(type) and x in

map(lambda z: z.split()[0],

AdminConfig.attributes(type).splitlines())

isAttribute("systemProperties", "JavaVirtualMachine") # -> 1

isAttribute("garbage", "JavaVirtualMachine") # -> 0

• Store attributes of a configurable type in a Jython dictionary:
from __future__ import nested_scopes

attsToDict = lambda type, dict:

map(lambda x:

dict(x[0:x.index(" ")]) = x[x.index(" ") + 1:] ,

AdminConfig.attributes(type).splitlines())

jvmatts = {}

attsToDict("JavaVirtualMachine", jvmatts)

jvmatts.has_key("systemProperties")

jvmatts.get("systemProperties")

The attrType may contain
spaces

Each entry is a string in the
format attrName-space-attrType

Builds dictionary of

all atts including

those whose

values are

references to other
types

2007 WebSphere User Group 35

Functional programming examples using Functional programming examples using

AdminConfig (3)AdminConfig (3)

• Store just the simple attribute names and append the

type name to each:
from __future__ import nested_scopes

attsToDict = lambda type, dict:

map(lambda x:

dict(x[0:x.index(" ")] + "_" + type) = x[x.index(" ") + 1:], \

filter(lambda x: x.endswith("*") == 0 and x.endswith("@") == 0, \

AdminConfig.attributes(type).splitlines()))

• Build a Jython dictionary of all simple attribute names

of all object types:
bigDict = {}

map(lambda x: attsToDict(x, bigDict), AdminConfig.types().splitlines())11

Contains entries such as:
{initialHeapSize_JavaVirtualMachine int}

2007 WebSphere User Group 36

Functional programming examples using Functional programming examples using

AdminConfig (4)AdminConfig (4)

• Use the dictionary to validate and set values:

def setValues(baseType, simpleName, qualifier=None, **setThese):

objid = AdminConfig.getid("/" + baseType + ":" + simpleName + "/")

for attrUndType, value in setThese.items():

undPos = attrUndType.find("_")

if bigDict.has_key(attrUndType):

attrName = attrUndType[:undPos] ; attrType = attrUndType[undPos+1:]

attrTypeIdList = AdminConfig.list(attrType, objid).splitlines()

if qualifier:

for listItem in attrTypeIdList:

if listItem.startswith(qualifier):

attrTypeId = listItem

break

else:

if len(attrTypeIdList) == 1:

attrTypeId = attrTypeIdList[0]

AdminConfig.modify(attrTypeId, [[attrName, value]])

One generic function

serving most update
needs

15

Error checking

removed to keep this
example simple

2007 WebSphere User Group 37

Functional programming examples using Functional programming examples using

AdminConfig (4)AdminConfig (4)

• Use the dictionary to validate and set values:

setValues("Server", "engine1",

initialHeapSize_JavaVirtualMachine = 1024,

maxInMemorySessionCount_TuningParams = 200,

parallelStartEnabled_Server = "false")

setValues("Server", "engine1",

description_ThreadPool="some description",

minimumSize_ThreadPool=2,

maximumSize_ThreadPool = 17,

qualifier="WebContainer")

setValues() works for

simple changes. Doesn't

create or delete objects.

Doesn't add or delete

attributes to existing objects
(e.g. custom properties)

16

2007 WebSphere User Group 38

Regular expressionsRegular expressions

• Similar to regexp in other languages

• Can get unreadable – use raw strings
(introduced by "r")

• Produce a more readable list of application
servers:

import re

for appserv in

AdminConfig.list("ApplicationServer").splitlines():

print re.sub(r".*\(cells/.+/nodes/(.+)/servers/(.+)\|.+\)",

r"\2 on \1", appserv)
12

2007 WebSphere User Group 39

ThreadsThreads

• Run an object and arg tuple in a new thread:
import thread

mynode = "appServNode"

def startAServer(server):

print "I'm: ", server

AdminControl.startServer(server, mynode)

print "I'm done: ", server

for server in "server1", "server2":

thread.start_new_thread(startAServer, (server,))

Starts application servers

in parallel threads. Note

the tuple passed as an
argument to the function

2007 WebSphere User Group 40

Modules and packagesModules and packages

• Module: a .py file containing Jython code

� Can reload modules you're working on using reload()

• Package: Hierarchy of modules in a directory tree

� Is a package if there's a file called __init__.py in the

directory

• Use the import statement to load them

� import A.B.C implies A and B are packages, C is a

module or package

• Special variables: __name__, __doc__, __file__, __all__

• dir(A.B.C), dir(A.B.C.someFunction) tell you what's
available

2007 WebSphere User Group 41

Importing modules and packagesImporting modules and packages

• Four types of import:

� Import everything in a hierarchy:
import sys

� Import a subset of a hierarchy:
from java import util

� Import a hierarchy but give it a new name:
import os as myOS

� Import a subset but give it a new name:
from sys import packageManager as pm

Can import WebSphere
classes too

2007 WebSphere User Group 42

Using AdminConfig etc from packagesUsing AdminConfig etc from packages

• Suppose A.B.C.py contains this:
def listServers():

AdminConfig.list("Servers")

• and you invoke it from D.py:
import A.B.C as C

C.listServers() # -> NameError

• Could change D.py to call execfile("<path>/C.py"), but this
collapses everything to a single module – you might get name clashes.
Would then call listServers() not C.listServers().

• Instead you could change C.py and retain the hierarchy:

import com.ibm.ws.scripting.AdminConfigClient as Scripting

AdminConfig = Scripting.getInstance()

def listServers():

AdminConfig.list("Servers")

Not even placing global

AdminConfig in C.py

works. Global in Jython is

not the same as in Jacl

Clearly this is WAS-version

specific so isn't a great solution

2007 WebSphere User Group 43

Some useful Jython librariesSome useful Jython libraries

• Need to import these libraries to use them

• Useful things in sys:
argv, modules, path, platform, version, exc_info()

• Use os for platform-independence
os.linesep, os.pathsep, os.mkdir(), os.stat(), os.listdir(),

os.path.join(), os.path.isfile(), os.path.isdir(),

os.path.dirname(), . . .

• Use glob for file pattern matching

• Use re for regular expressions

• Unit testing with PyUnit

Java platform (e.g. 1.5)

Jython version (e.g. 2.1)

For really robust admin scripts:

import unittest

<body of module>

if __name__ == '__main__':

<test cases>

2007 WebSphere User Group 44

ClassesClasses

• No explicit private, protected, public tags
� Implicit name prefixes:

• One underscore => private

• Two underscores => very private

• But can always access via the full name

• Defining a class:
class class_name[(inheritance)]:

<code>

class Myclass:

"""documentation"""

<class-level attributes>

<method 1>:

<instance-level attributes>

Note: no class-level
(static) methods

Can dynamically
create attributes

Create class-level attributes

within a method by prefixing
with the class name

2007 WebSphere User Group 45

Instance methods and constructorsInstance methods and constructors

• Use the __init__ method as a constructor

• Instance method definitions require an identifier as the first parameter
(conventionally "self"):

class JVM:

def __init__(self, server = "server1"):

serverId = AdminConfig.getid("/Server:"+server)

stringJvmIds = AdminConfig.list("JavaVirtualMachine", serverId)

listJvmIds = stringJvmIds.split()

if len(listJvmIds) != 1:

raise "JVMIdException"

self.jvmString = listJvmIds[0]

def getHeapSizes(self):

minHeap = AdminConfig.showAttribute(self.jvmString, "initialHeapSize")

maxHeap = AdminConfig.showAttribute(self.jvmString, "maximumHeapSize")

return (minHeap, maxHeap)

jvmid = JVM("controller")

minHeap, maxHeap = jvmid.getHeapSizes()

print minHeap, maxHeap

13

2007 WebSphere User Group 46

Class InheritanceClass Inheritance

• Can inherit from multiple classes:
class OrderItem(Cust, Stock):

def __init__(self, custref, stockref, qty):

self.custref = custref

self.stockref = stockref

if stockref.qty – qty >= 0:

self.qty = qty

stockref.qty -= qty

else:

print "Not enough in stock"

def showQty(self):

print self.custref.id, ":", self.custref.name, ":",

self.stockref.code, ":", self.qty

myitem = orderItem(alphaOrg, stock1, 14)

myitem.showQty()

2007 WebSphere User Group 47

Java from JythonJava from Jython

• A Jython class can only inherit from one Java class,

but many Jython classes

• A Jython subclass cannot access a Java class's:

� protected static methods and fields

� protected instance fields

� package-protected members

• Just import the Java classes and off you go:
from java.lang import System

from java.lang import String

x = String("Spamalot")

if x.startsWith("Spam"):

System.out.println("Spam spam spam spam")

2007 WebSphere User Group 48

And now for something completely differentAnd now for something completely different

• Making wsadmin scripts

more readable, robust,

maintainable, extendable

• Making interactive

administration a more

friendly experience

• Suggested conventions

2007 WebSphere User Group 49

Scripts should be environmentScripts should be environment--independentindependent

• Scripts must be independent of the target
environment
� Don't edit the scripts as you move from environment to

environment

� Externalise in properties files

� Could split into "definitely unique per environment" and
"common but seems sensible to externalise"

� Choice:
• Make the property values Jython sequences

• Make them more human-readable

� Choice:
• Use execfile() to execute those properties files

• Use the –p option on the wsadmin command line

2007 WebSphere User Group 50

Scripts should be modularisedScripts should be modularised

• EITHER:
� Develop a common.py

� Develop individual .py files that wrap up a
bunch of AdminConfig, AdminApp objects

• e.g. jdbc.py, appserver.py, cluster.py

� execfile() them all and have a single
namespace for your entire scripts

• OR:

� Use Jython packages, modules and classes to
structure it in an OO fashion

� import these and have separate namespaces

2007 WebSphere User Group 51

Good practicesGood practices

• Strive for platform independence

• Never make N calls from a shell script to wsadmin
each passing a separate –c option

� Each involves connecting to WAS

� Make those N calls from within a wsadmin script

• Script the entire configuration build
� Tear down and rebuild

• Simplify the wsadmin complexity:

� Hide the verbose naming convention
• Work in WAS scopes

• Display simple names, work out the verbose ones

� Hide the navigation hierarchy

2007 WebSphere User Group 52

More good practicesMore good practices

• You probably don't need to dive into Java from Jython
� Many (most?) administrators are not Java programmers

• Don't just provide create, modify and delete functions
� List and show are also useful
� Build a script library – a library of functions and/or classes & methods

• Move away from positional parameters on functions
� Allow keywords or dictionaries to be passed in

• Make it possible to use your library easily interactively
� This is hardly the case with out-of-the-box wsadmin

• Conventions:
� Class names have upper case first char
� Method and function names in camelCase
� Spaces around operators and parameters
� No space before colon in dictionaries
� Indent consistently either 2 or 4 spaces

2007 WebSphere User Group 53

SummarySummary

• Déjà vu:

� We've seen there are

excellent Jython productivity

tools in the WAS 6.1 AST

� We've looked at the basic

and some advanced

features of the Jython

language

� We've established some

recommended practices for

Jython scripting

2007 WebSphere User Group 54

ReferencesReferences

• Jython Essentials, Samuele Pedroni & Noel
Rappin (O'Reilly)

• Jython for Java Programmers, Robert Bill
(New Riders)

2007 WebSphere User Group 55

Spanish InquisitionSpanish Inquisition

• Nobody expects . . .

