
InterConnect
2017

Building Cloud Native
Microservices with Liberty
and Node.js: A Product
Development Journey

Tom Banks: IBM Offering Manager
and Technical Evangelist

1 4/13/2017

2 4/13/2017

Please note

IBM’s statements regarding its plans, directions, and intent
are subject to change or withdrawal without notice at IBM’s
sole discretion.

Information regarding potential future products is intended to
outline our general product direction and it should not be relied
on in making a purchasing decision.

The information mentioned regarding potential future products
is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential
future products may not be incorporated into any contract.

The development, release, and timing of any future features
or functionality described for our products remains at our sole
discretion.

Performance is based on measurements and projections
using standard IBM benchmarks in a controlled environment.
The actual throughput or performance that any user will
experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in
the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve
results similar to those stated here.

Goals of this session

Provide insights into what it means to
develop cloud native microservices

Discuss the tools used throughout the
process

Talk about developing with WebSphere
Liberty and Node.js

Use a reference project developed over
the last year to show real examples

3 4/13/2017

4 4/13/2017

What does cloud native really mean?

• Microservices

• Containers from development to production

• Continuous Delivery/Continuous Integration

• Deploy to the cloud (or on premise) using consistent deployment methods

• Portability between clouds built on the same technologies

An application architecture designed to leverage the

strengths and accommodate the challenges of a

standardized cloud environment, including concepts such

as elastic scaling, immutable deployment, disposable

instances, and less predictable infrastructure.

IBM Voice Gateway | ©2017 IBM Corporation

Customer value

Based on customer demand, with customers

able to provide continuous feedback,

testing, and new requirements.

Agile development

Small, agile development team with

minimal process, and the ability to deliver

value quickly and easily.

Use the best of IBM technology

To build a stable, scalable application we

needed to leverage our existing technologies

as a foundation to the new offering.

5

IBM Voice Gateway

IBM Voice Gateway | ©2017 IBM Corporation

Connect to Cloud

IBM Voice Gateway is a brand new connect

to cloud offering that uses WebSphere

Liberty to connect the telephone network to

Watson’s services in Bluemix

Bring Watson to your call center

Through connecting Watson Speech To

Text, Conversation, and Text To Speech, to

the phone network you can use Watson as

a self-service customer service agent

Cloud native

The IBM Voice Gateway is a cloud native

solution, comprising of two microservices

delivered as Docker Images - this gives

maximum flexibility in a cloud native world
6

Customer

calls support Watson services are

orchestrated by Voice

Gateway to talk with

customer

Voice Gateway

connects call

with

Watson

The Voice Gateway can

transfer call to agent if

necessary

IBM Voice Gateway

7 4/13/2017

Text To Speech

Watson Services

Conversation

(Dialog, NLC)

Speech To Text

SIP Trunk

SIP Orchestrator

Media Relay

Twilio used

for demo

IBM Voice Gateway

Reference Project Microservice Architecture

WS

Project attributes

 Work as a ‘startup’ inside IBM

 Built by a small agile squad

Non-functional requirements:

 Deliver as a cloud native solution

 Rapid prototyping on Bluemix

 Rapid prototyping on premise

 Continuous delivery

8 4/13/2017

Early
Prototype

Deliver
MVP
GA
release

Demos in
Bluemix

First
Sponsored
Users

Many
Customer
POCs

Dark beta +
Multitenant
Bluemix env

Release
Process

Reference Project Timeline

March
2016

March
2017

Demos

hosted on

Bluemix IBM

CaaS

GitBook used

to document

the beta

Public

DockerHub

repo used to

deliver

images

First

prototype

built with

Watson SDK

Early doc on

Enterprise

GitHub Wikis

Docker

images

pushed to

private

DockerHub

repository

On premise

deployments

on Docker

Engine

Customer

validation,

production

planning

Run on IBM

Spectrum CfC

substrate

June
2016

9 4/13/2017

Organizing your teams for cloud native development

Spotify engineering allowed for lots of autonomy
• Teams organized into squads that have the freedom to define what tools,

processes and procedures work best for them

• Encourages a culture of innovation and continuous improvement

• Strips away bureaucracy

Impact on my team
• Developed our own CI/CD pipeline (based on new corporate tools)

• Developed many early prototypes

• Worked directly with early adopters which helped us quickly figure what was

important and what wasn’t

• Autonomy allowed for team to work directly with customers to define product

10 4/13/2017

Working with Git and GitHub

Git is by far the best source control option for developing cloud native services:

• Integrates well with modern DevOps tools

• Extremely agile and flexible

• Public and private repositories

Source control for reference project managed by:

• Internal Enterprise GitHub repository for source

• External GitHub repository for sample scripts and beta documentation

Provided a way to share source, samples and wikis across your organization

• No divisional restrictions

• Enable anyone in the company to open an issue or request for enhancement

• Cultivated an open source community inside of IBM

• Lessons learned

• Agree early on team processes around the use of Git

11 4/13/2017

Git Flow

Git Flow defines how your team

develops and delivers code using git.

Lessons learned:

• How your team works with git is

important to define up front.

• Git flow is fairly standard and lots

of good examples exist.

12 4/13/2017

Working with ZenHub

ZenHub is an enterprise-ready project management tool that adds features

right into GitHub.

Features include:

• Epics, Milestones and Issues

• Burn down charts

• Issues pipeline

Lessons learned:

• Include issue number in

branch name

• Epics do not span

repositories

13 4/13/2017

Working with Docker images

Early development with Docker

 Install Docker (Docker Engine, Docker for Mac, etc.)

 Create images locally with Docker build files

 Configuration through Docker environment variables

Docker compose:

 Tool for defining and running multi-container Docker applications.

 Provides a nice way to manage configuration of multiple containers from a single file.

Internal Docker image distributions used Artifactory

 Pipeline pushes a new Docker image after every pull request

 Allowed team to make images available to internal customers

 Allowed team to quickly test new image builds

 Access strictly controlled by squad

14 4/13/2017

External Docker Image Distributions

• DockerHub currently being used for public distribution of Docker images

• Easy to setup CI/CD pipeline to push images

• Easy for customers to pull images

• Started out with a private DockerHub repository

• DockerHub access to images controlled by squad

• Later moved to public DockerHub repository for beta and release images

• Accessible by anyone through pull requests

15 4/13/2017

Source

 Developers push code into GitHub

 GitHub triggers a Jenkins build which also initiates
automated functional and unit test

 Docker image pushed into Artifactory

 Developers pull images from Artifactory for testing

4. After testing is completed, released Docker
images are pushed into DockerHub and the
Bluemix Docker registry.

Hub

On Premise Substrate

(e.g. Spectrum CfC)

4. Customer pull Docker images into
their on premise registry where they
can be deployed into the on-premise
substrate.

Our CI/CD Pipeline

16 4/13/2017

Jenkins Orchestrates Build and Test Automation

• Jenkins Pipeline defined by Jenkins file

• Build automation script

• Maintained with the source code of a repository

• Gives developers the ability to modify or view the build script at will

• Serves as a single source of truth

• Jenkins triggered by git
pull requests and merges

• Jenkins builds utilize
Gradle files checked into
source projects

17 4/13/2017

Jenkins dashboard for one of our Git repositories

18 4/13/2017

Test Automation

• Unit and functional testing

• Liberty based Microservice

• Junit

• Bash scripts (functional testing built in Java)

• Node.js based Microservice

• Mocha for unit and functional testing

• System automation test

• Jenkins builds Docker images and executes bash script

• Docker containers launched from bash scripts

• System test code runs in Java

19 4/13/2017

Cloud native development with WebSphere Liberty and Node.js

• Both runtimes are extremely lightweight (small footprint, start in seconds)

• Both runtimes already available as IBM provided Docker images

• Both runtimes integrate well with other Microservices

WebSphere Liberty

• Java

• Great for process intensive workloads

• Multi-threaded

• Java EE and SIP based workloads

• Great IDEs (Eclipse) and debuggers

Node.js

• JavaScript

• Great for networking workloads

• Single threaded

• Completely asynchronous

• Minimal context switching under load

Docker file attributes

• Based on image from Bluemix

• Set Docker environment vars

• Copy feature (or war) to image

Building a Liberty
based application
is simple using
Docker

214/13/2017

Passing Docker env variables to
your application:

• If var not set, ${xxx} passed to
application

The Liberty
server.xml and
Docker env
variables

224/13/2017

Docker file attributes

• Based on image from Bluemix

• Add npm modules

• Set Docker environment vars

• Startup node

Building a Node.js
based application
is simple using
Docker

23 4/13/2017

The importance of rapid prototyping in the cloud

• Great way to reach customers for early demos

• Provides a path to a true cloud service

• Feedback from early adopters was invaluable

• Customer input drove feature/functions

• Lessons learned:

• Be prepared for port scanners to disrupt your application (fix using white
listing, mutual authentication, etc.)

• Think multi-tenancy instead of a new env/space for every customer

• Be prepared to spend a lot of time supporting POC environments for
other people!

24 4/13/2017

Working with IBM Container Service (ICS) in Bluemix

• ICS provides a way to quickly demo in a way that both internal and
external users can easily access over public internet

• Process to deploy:

1. Tag Docker images for your Bluemix repository.

2. Push images to Bluemix

3. Create containers

• See sample bash ICS deployment scripts here:

• Lessons learned

• Docker compose does not work with ICS (use env files instead)

https://github.com/WASdev/sample.voice.gateway

https://github.com/WASdev/sample.voice.gateway.for.watson

25 4/13/2017

Using Docker images to deliver on premise

Docker only release has its advantages:

• Develop, test and deliver code in the form of Docker images

• Deliver software through existing public repositories like DockerHub

• Makes it really easy for customers to update to new releases

Things to consider:

• Configuration through Docker environment variables

• Container orchestration

• Security for hybrid cloud access

Lessons learned

• Docker on premise is still not widely adopted in production (this is changing

quickly)

• Leave extra time for hybrid connectivity issues (security, MPLS, etc.)

Becoming production
ready

26 4/13/2017

27 4/13/2017

Container Orchestration

• Orchestration needed for cluster management:

• Container scheduling, Auto-scaling, Rolling Updates, etc

• Options include Kubernetes, Docker Swarm, Mesos

• Kubernetes has been the focus of the reference project

• Lessons learned:

• Make sure the framework meets your load balancing
requirements like session affinity and protocol support

IBM Spectrum Conductor for Containers

4/13/2017 28

Distributed Key -
value

Install

Proxy

Logging/Reporting

CI/CD

Tenant

management

Network

Authentication

Authorization

Persistent

Volume

GUI

Image Registry
Service

Discovery
Service Load

Balancing
Trouble Shooting

HA

Open Source + Integration + Value Add

Resource

Management

LSF Community

Edition

Application Catalog

29 4/13/2017

Deploying Docker images on CfC for production

• IBM Spectrum Conductor for Containers provides an IBM supported,
Docker substrate to run non-managed containers.

• Docker registry

• Orchestration through Kubernets

• Management, monitoring, log aggregation, etc.

• https://www.ibm.com/developerworks/community/groups/service/html/co
mmunityoverview?communityUuid=fe25b4ef-ea6a-4d86-a629-
6f87ccf4649e

https://www.ibm.com/developerworks/community/groups/service/html/communityoverview?communityUuid=fe25b4ef-ea6a-4d86-a629-6f87ccf4649e

Liberty
Liberty

CGW on Liberty

logstashCollector-1.0

FFDC

Logs &

Trace

GC

Events

Latency

Events

Connect to Logmet/Bluemix or your own ELK

 Consolidate data from any servers that have access

to your Logstash server

ELK

Logstash

ElasticSearch

Kibana

Browser

Log Analytics

31 4/13/2017

Reporting and Monitoring

On premise reporting

• Splunk is very popular for on premise deployments

• Splunk HEC provides a format that can be used with REST

Cloud Native

• Prometheus is popular for cloud native

• Lots of options here

Community Building

• Slack channel

• Internal Slack channel allows for confidential exchanges of information

• Public Slack for building a community

• Leasons learned: Slack is not really designed for community building.

• StackOverflow tag

• GitHub repos with samples

• Dark launch of a public beta

• Allowed both external and internal customers to access our Docker images

32 4/13/2017

Chat on Slack
Example of how to register users who wish to join
your Slack channel:

http://ibm.biz/vgwslacksignup

http://ibm.biz/vgwslacksignup

33 4/13/2017

Conclusions

Think Microservices if you plan to shift to cloud native development

Plan to use modern dev ops tools to build it like Git, ZenHub, Jenkins, Gradle, etc.

Build your team to be as independent as possible (dev, support, etc.)

Utilize cloud container substrate for customer demos

Use container orchestration for HA and management of service

If going on premise, understand supported substrate options like CfC

InterConnect
2017

34 4/13/2017

35 4/13/2017

Notices and disclaimers

Copyright © 2017 by International Business Machines Corporation (IBM).
No part of this document may be reproduced or transmitted in any form
without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been reviewed
for accuracy as of the date of initial publication and could include
unintentional technical or typographical errors. IBM shall have no
responsibility to update this information. This document is distributed
“as is” without any warranty, either express or implied. In no event
shall IBM be liable for any damage arising from the use of this
information, including but not limited to, loss of data, business
interruption, loss of profit or loss of opportunity. IBM products and
services are warranted according to the terms and conditions of the
agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been previously
installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or product
plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a
controlled, isolated environments. Customer examples are presented
as illustrations of how those customers have used IBM products and

the results they may have achieved. Actual performance, cost, savings or
other results in other operating environments may vary.

References in this document to IBM products, programs, or services
does not imply that IBM intends to make such products, programs or
services available in all countries in which IBM operates or does
business.

Workshops, sessions and associated materials may have been prepared
by independent session speakers, and do not necessarily reflect the
views of IBM. All materials and discussions are provided for informational
purposes only, and are neither intended to, nor shall constitute legal or
other guidance or advice to any individual participant or their specific
situation.

It is the customer’s responsibility to insure its own compliance with legal
requirements and to obtain advice of competent legal counsel as to
the identification and interpretation of any relevant laws and regulatory
requirements that may affect the customer’s business and any actions
the customer may need to take to comply with such laws. IBM does not

provide legal advice or represent or warrant that its services or products
will ensure that the customer is in compliance with any law.

36 4/13/2017

Notices and disclaimers
continued

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in
connection with this publication and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products. IBM does not warrant the
quality of any third-party products, or the ability of any such third-party
products to interoperate with IBM’s products. IBM expressly disclaims
all warranties, expressed or implied, including but not limited to, the
implied warranties of merchantability and fitness for a particular,
purpose.

The provision of the information contained herein is not intended to, and
does not, grant any right or license under any IBM patents, copyrights,
trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS,
Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Document
Management System™, FASP®, FileNet®, Global Business Services®,
Global Technology Services®, IBM ExperienceOne™, IBM SmartCloud®,
IBM Social Business®, Information on Demand, ILOG, Maximo®,
MQIntegrator®, MQSeries®, Netcool®, OMEGAMON, OpenPower,
PureAnalytics™, PureApplication®, pureCluster™, PureCoverage®,
PureData®, PureExperience®, PureFlex®, pureQuery®, pureScale®,
PureSystems®, QRadar®, Rational®, Rhapsody®, Smarter Commerce®,
SoDA, SPSS, Sterling Commerce®, StoredIQ, Tealeaf®, Tivoli® Trusteer®,
Unica®, urban{code}®, Watson, WebSphere®, Worklight®, X-Force® and
System z® Z/OS, are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

http://www.ibm.com/legal/copytrade.shtml

