
InterConnect
2017Microservices:

How they relate to
ESB, APIs and
messaging

Kim Clark
Integration Architect
Offering Management for
Hybrid Integration

0 3/20/17

1 3/20/17

Please note
IBM’s statements regarding its plans, directions, and intent
are subject to change or withdrawal without notice at IBM’s
sole discretion.

Information regarding potential future products is intended to
outline our general product direction and it should not be
relied on in making a purchasing decision.

The information mentioned regarding potential future
products is not a commitment, promise, or legal obligation to
deliver any material, code or functionality. Information about
potential future products may not be incorporated into any
contract.

The development, release, and timing of any future features
or functionality described for our products remains at our
sole discretion.

Performance is based on measurements and projections
using standard IBM benchmarks in a
controlled environment. The actual throughput or
performance that any user will experience will vary
depending upon many factors, including considerations such
as the amount of multiprogramming in
the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve
results similar to those stated here.

2

Agenda

• Clarifications on microservices
• API management with microservices
• Messaging with microservices
• What happens to the ESB?

Encapsulation is the key!

Microservice comp

Silo logic

Silo
data

Microservice comp

Microservice
component

Microservices ApplicationMonolithic Application

Why Microservices?

Small scoped, independent, scalable components

Agility
Faster iteration cycles
Bounded context (code and data)

Scalability
Elastic scalability
Workload orchestration

Resilience
Reduced dependencies
Fail fast

4

Microservices: Why now? (technical standpoint)
• Ease/feasibility of distributing components

– Internet/intranet/network maturity

– Extremely wide adoption of RESTful API conventions,

– Resurgence of lightweight messaging (e.g. Kafka, AMQP)

• Ease/simplicity of hosting

– Lightweight runtimes (e.g. node.js, WAS Liberty etc.)

– Simplified infrastructure (Virtualisation/hypervisors, containerisation/Docker, cloud infrastructure/IaaS)

– Platform as a service (e.g. auto-scaling, SLA management, messaging, caching, build management etc.

• Agile Development Methods
– Agile, DevOps, TDD, etc

– Standardised code management (e.g. Github, Jenkins etc.)

5

Microservice Challenges and Inhibitors

6

§ Maturity
§ Are	you	ready	for	a	radical	change	in	methods,	skillsets,	infrastructure,	operations.
§ Are	you	sufficiently	automated	(infrastructure,	test,	dev	pipeline,	deployment	etc.)

§ Maintenance
§ Will	you	be	able	to	sustain	the	skillsets	needed	to	maintain	the	mircoservices architecture	in	the	future?

§ Latency	&	Serialization	
§ A	request/response	chained	down	a	set	of	microservices	must	incur	extra	latency	from	network	hops	and	serialization
§ Serialization	has	advanced	massively	in	recent	years,	but	inevitably	has	some	contribution	to	CPU	usage

§ Data	sharing
§ Not	all	data	can	be	split	into	neat	independent	functions.	Some	things	are	shared,	and	this	needs	careful	design

§ Real-time	dependencies	and	their	combined	availability
§ Microservices	calling	other	microservices	synchronously	need	careful	consideration
§ Tends	to	creep,	as	one	service	builds	on	top	of	another
§ Need	to	move	to	more	complex	message	based	techniques	and/or	introduce	availability	patterns	such	as	circuit	breaker	

§ Manageability
§ How	do	you	manage	and	monitor	a	vast	network	of	microservices
§ How	do	you	diagnose	problems	across	a	heavily	distributed	landscape

§ How	does	persistence	work?
§ Pessimistic	versus	Optimistic
§ How	to	handle	shared	objects
§ Relational	/	NoSQL
§ ACID	/	BASE	/	CQRS	/	Event	Sourcing?

Are you really doing microservices
or just aligning with some of the microservice principles?

Martin Fowler/James Lewis
1. Componentization
2. Organized around Business Capabilities
3. Products not Projects
4. Smart endpoints and dumb pipes
5. Decentralized Governance
6. Decentralized Data Management
7. Infrastructure Automation
8. Design for failure
9. Evolutionary Design
http://martinfowler.com/articles/microservices.html

7

12 factor apps
I. Codebase
II. Dependencies
III. Config
IV. Backing Services
V. Build, release, run
VI. Processes
VII. Port binding
VIII. Concurrency
IX. Disposability
X. Dev/prod parity
XI. Logs
XII. Admin processes
http://12factor.net

Consider the adoption paths of SOA, XP, agile, devops etc. These often came with
an “all or nothing” message, but can you take on the whole package?

Containers, orchestration frameworks, event sourced applications, eventual
consistency, CQRS, circuit breaker, bulkhead, service discovery, sidecars, routing
fabrics, continuous delivery, agile programming, test driven development, contract
driven development, domain driven design, centralised logging, polygot runtimes…...

A quick look at trends

https://trends.google.co.uk/trends/explore?date=all&q=service%20oriented%20architecture,enterprise%20service%20bus,microservices

But does it really make sense to compare these things to one another at all?

Application

SOA relates to enterprise service exposure *

Application ApplicationApplication

Service oriented architecture (SOA)
and microservices architecture relate to different scopes

Microservice
application

µService

µServiceµService

µService

Microservices relate to
application architecture

* this simple distinction can be contentious depending on your definition of SOA

Microservices vs SOA - short blog and video (10 mins)
http://ibm.biz/MicroservicesVsSoaBlog, http://ibm.biz/MicroservicesVsSoaVideoShort

Original PoV paper on microservices and in integration (~ 15 pages) http://ibm.biz/MicroservicesVsSoa
Webinar based on above paper (55 mins) http://ibm.biz/MicroservicesVsSoaFullWebinar

Why such split opinions on microservices vs SOA?

10

Integration Hub

Integration Hub
Adapter Adapter

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

Sa
aS

Ap

pl
ic

at
io

n

Bu
si

ne
ss

 P
ar

tn
er

Sy
st

em
s

of

Re
co

rd

Bu
si

ne
ss

Pa

rtn
er

Exposure Gateway (external)

Mature large enterprise
Microservices are just one style of application

Exposing services is an integration and data challenge

Green field online start-up
Much of landscape could be microservice based

The landscape is as (micro)service oriented
architecture

Exposure Gateway (external)

Microservice
application

µService

µServiceµService

µService

Exposure Gateway (internal)

µService
µService

µService

µService

µService

µService
µService

µService

µService

µService

µService

En
te

rp
ris

e
Bo

un
da

ry

En
te

rp
ris

e
Bo

un
da

ry

Adapter Adapter

Some microservices principles are really different to SOA

11

Reuse is not the goal

Re-use of common components is
discouraged due to the dependencies

it creates. Re-use by copy is
preferred.

Synchronous is bad

Making synchronous calls such as API
or web services creates real-time
dependencies. Messaging is used

wherever possible between
microservices.

Client side load balancing

Components are assumed to be
volatile, so it is often the client’s

responsibility to find and even load
balance across instances.

Data duplication is embraced

Techniques such as event sourcing
result in multiple independent “views”

of the data, ensuring the
microservices are truly decoupled.

Microservice
component

Common misconception resulting from the term “microservice”

Monolithic application Microservices application

Exposed services/APIs

Microservice
component

Microservice
component

Exposed services/APIs

Silo
component

Microservices are just more fine grained web services

APIs are microservices

“micro” refers to the granularity of the components,
not the granularity of the exposed interfaces

x 1 x 3

x 4x 4

Is “microservices architecture” is really
“micro-component architecture”?Clarification on Microservices vs APIs - short video (4 mins)

http://ibm.biz/MicroservicesVsAPIVideo

Microservices application

Importance of API management for microservices

API Gateway

Developer
Portal

API
Manager

API Gateway:
• Decoupling/routing
• Traffic management
• Security
• Translation

Developer portal:
• API discovery
• Self subscription/administration
• Account usage analytics

API Manager:
• Plan/product design
• Access management
• Policy administration
• API plan usage analytics

Individual microservice components should not be burdened
with the complexities of API exposure beyond the
microservices application boundary. Exposure should be
delegated to a separate capability providing as a minimum, a
gateway, a developer portal, and API management.

Microservice
component

Inter-microservice vs. inter-application communication

M
ic

ro
se

rv
ic

es

ap
pl

ic
at

io
n

Microservice
component

Microservice
component

Inter-microservice communication
• Lightweight protocols: HTTP,

application messaging
• Runtime component registry
• Client-side load balancing and circuit

breaker patterns

M
ic

ro
se

rv
ic

es

ap
pl

ic
at

io
n

Exposure Gateway

Inter-application communication
• Enterprise protocols: Managed API

gateways, enterprise messaging
• Design time developer portals
• Gateway load balancing and throttling

JSON/HTTP RESTful communication styles may
be present in both types of communication, but
their implementation may be radically different.

JSON/HTTP

Create Run

ManageSecure

API Creation
• API Creation from Swagger doc or

Loopback models, in minutes
• API Discovery from SoRs
• Cloud & on-premises staging

of APIs, Plans & Products

Microservice Runtimes
• Node.js & Java Microservice runtime
• Built-in CLI for DevOps
• On-cloud & on-premises staging of

Microservice applications

Management, Socialization & Analytics
• API, Plan & Product policy creation
• Lifecycle governance & management
• Self-service, customizable, developer

portal with subscription & community
management

• Advanced Provider & Consumer
Analytics

Field Proven Security
• Policy enforcement, quota

management & rate limiting
• Response caching, load-balancing

and offload processing
• Message format & transport

protocol mediation

IBM API Connect: Circa 2016

API Connect & Gateways: Recent features

Key microservice related features:
• Hybrid deployment of multiple gateways to any cloud
• Centralized management and portal collating from decentralized gateways
• Real time log streaming for 3rd party analytics
• Docker based dev install
• Devops friendly with CLI and REST based administration
• Microservices based product architecture
• Cloud agnostic deployment
• Open sourced extensible micro-gateway
• Embedded lightweight runtime (Node.js)
• Model driven API creation of microservice based implementation
• Enabled for common orchestration frameworks (Kubernetes, Swarm)
• Out of the box monitoring for Node.js microservice implementation

At InterConnect 2017

HHA-6229 What's New in IBM API Connect Tue, 21-Mar 03:45 PM -
04:30 PM

Mandalay Bay
South, Level 2
Lagoon H

HHA-6248 What's New in IBM DataPower
and API Gateways

Tue, 21-Mar 11:30 AM -
12:15 PM

Mandalay Bay
South, Level 2
Lagoon B

Microservice
Microservice

Microservice

Microservice

Micro services Inter-communication

Microservice

Message
Hub

Publish

Service
DiscoveryMicroservice

Microservice

Microservice

Subscribe

Subscribe

API

API

Publish
JSON /
HTTP

JSON /
HTTP

Microservices
application

Aim is decoupling for robustness

Messaging where possible
• Lightweight messaging

(e.g. AMQP, Kafka)
• Publish/subscribe
• Eventual consistency

Direct calls where necessary
Lightweight protocols
(e.g. JSON/HTTP)
• Load balancing/scaling via

service discovery
• Circuit breaker
• Caching

Creating truly independent microservices applications

19

Microservices application

API Gateway

SoR SoR

Enterprise integration

Gateway

SoRSoR

AP
Is

Ev
en

t
St

re
am

s

D
at

a
Sy

nc
h

To provide agility, scalability and resilience benefits
microservices need to be as independent of the systems
of record as possible
• APIs: Are simplest to use, but create a runtime

dependency, reducing isolation. Patterns such as
circuit breaker required to retain resilience

• Event streams: Enable microservices to build
specialized views on the data (event sourcing), but
needs a separate path for updates, so may still need
some synchronous APIs unless using eventual
consistency patterns.

• Data sync: Provides a replica of back end system
data local to the microservice and potentially allows
changes in either back end or replica. Data sync
patterns are non-trivial however.

Messaging in microservices (20 mins):
http://ibm.biz/MicroservicesAndMessagingWebinar

IBM MQ On
Prem.

Bl
ue

m
ix

20

Example
APIs implemented using
microservices with local
data stores.

Consolidate enterprise
events into event streams

Multiple options for how to
populate microservices
data stores.

Event

IBM
Integration

Bus

API

Message Hub

Events

Node.js

Mongo
DB

Kafka
API

Mongo
API

REST/
HTTP

Alternate
paths2

3

1

2

API Gateway

Node.js

Engagement App

SoRSoR

Events

MQ Topic
Listener

On-prem

… IBM MQ Appliance

AWS
AWS

AWS …

Cloud

Message Hub

IBM Bluemix
(including Softlayer)

Distributed platforms

…

Private cloud

Run MQ, exactly how and where you need it

Monitor	MQ	usage	
with	IBM	Cloud	
Product	
Insights

Customize	web	
tools	more	easily
with	extensions	to	

the	REST	API?

Boost	reliability	and	performance	with	new	managed	
logging	options

Automatic	management,	recording	and	reuse	of	logs	lowers	
administrative	overheads,	and	improves	performance	and	
message	throughput	for	more	consistent	response	times

Get	Started	FAST	with	MQ	in	the	Bluemix Container	Service

Pre-configured	defaults	mean	instant	access	for	
administration	and	messaging	applications….
…the	fastest	way	to	get	up	and	running	for	development	
and	experimentation!

Make	it	easy	and	fast	to	use	
Sales	and	CRM	data	with	IBM	MQ	

Bridge	for	Salesforce

No	disruption	to	your	Salesforce	
system	or	MQ	Application	– just	
receive	the	information	you	need

MISS	THE	NEWS?	Upgrade	from	MQ	to	MQ	Advanced,	or	use	MQ	Appliance,	and	enjoy	MFT	agents	at	no	cost!*
*when	connected	to	MFT-enabled	(co-ordination,	logging,	or	agent)	MQ	Advanced	/	MQ	Appliance	queue	managers

What’s	New	in	MQ	V9.0.2?

Platform Event

PushTopic

MQ Publication

IBM MQ
Bridge for
Salesforce

Fix	file	transfer		
problems	quickly

with	insights	from	the	
problem	determination	tool

MQ sessions this week

23

HHM-
6878

You Need MQ Messaging! Let
Me Tell You Why...

Mon, 20-
Mar

04:15 PM -
05:00 PM

Mandalay Bay South,
Level 2 Breakers B Leif Davidsen

HHM-
6878

You Need MQ Messaging! Let
Me Tell You Why...

Thu, 23-
Mar

09:30 AM -
10:15 AM

Mandalay Bay South,
Level 2 Surf A Leif Davidsen,

HHM-
6879

IBM MQ Advanced: The
Answer to All Your Messaging
Needs

Mon, 20-
Mar

02:00 PM -
02:45 PM

Mandalay Bay South,
Level 2 Lagoon C Leif Davidsen,

HHM-
6880

IBM MQ Appliance: A
Messaging Solution in a Box

Mon, 20-
Mar

01:00 PM -
01:45 PM

Mandalay Bay South,
Level 2 Breakers B A. Beardsmore,

HHM-
6882

The Latest and Greatest MQ
Messaging Enhancements

Mon, 20-
Mar

03:15 PM -
04:00 PM

Mandalay Bay South,
Level 2 Lagoon B

Andrew
Schofield;
D. Ware

HHM-
6883

IBM Message Hub: Cloud
Native MQ Messaging

Wed,
22-Mar

01:00 PM -
01:45 PM

Mandalay Bay South,
Level 2 Lagoon B

Paula Ta-Shma;
Andrew
Schofield

Where else could we use microservices principles?

24

Sy
st

em
s

of
 R

ec
or

d

Integration Hub

Integration Hub
Adapter Adapter

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

ns

Sa
aS

 A
pp

lic
at

io
ns

(e
xt

er
na

l)

Adapter

Externally Exposed Services/APIs

Exposure Gateway (internal)

Exposure Gateway (external)

Bu
si

ne
ss

 P
ar

tn
er

s

SOA architecture using the traditional ESB pattern

Sy
st

em
s

of
 R

ec
or

d

Integration
Hub

En
ga

ge
m

en
t

Ap
pl

ic
at

io
ns

Externally Exposed Services/APIs

Lightweight integration runtime
Lightweight language runtime

Public API
Enterprise API

API Gateway

Integration Hub
Exposure Gateway

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n

Exposure Gateway (external)

Traditional and common implementation
of the enterprise service bus (ESB)
pattern is a centralized facility from
which all synchronous requests to back
end systems are exposed in a
standardized way.

ESB is an architectural pattern, but
unfortunately the term is often
confusingly attributed to specific
components.

The centralized nature of the
typical implementation was due
to technical limitations of the
time. Bare metal servers, CPU
based static licensing, slow
procurement of infrastructure.

Asynchronous integration
Request/response integration

Componentization/containerization of the integration hub

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

n

Externally Exposed Services/APIs

Exposure Gateway (external)
Lightweight integration runtime

Lightweight language runtime

Public API
Enterprise API

API Gateway

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n

Modern integration runtimes have
become more lightweight, and there is a
range of more flexible infrastructure
including virtual machines, containers
and container orchestration.

There is no reason why the centralised
ESB can not be broken up into smaller
more easily managed and scaled
independent pieces.

This could certainly be seen to be
borrowing from microservices
principles, even if it is not necessarily
full microservices architecture.

Note that pre-ESB asynchronous hub
and spoke integration can also be
broken up in this way.

Would this still be classed as
the ESB pattern? Does
anybody care…

Asynchronous integration
Request/response integration

Decentralized integration

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

n

Externally Exposed Services/APIs

Exposure Gateway (external)
Lightweight integration runtime

Lightweight language runtime

Public API
Enterprise API

API Gateway

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

nHaving broken up the problem into
smaller pieces, and integration tooling
becoming easier to install and use, it is
also now easier distribute the work.

Standardized exposure could now be
“owned” by the same team that own the
system of record. This significantly
improves agility by reducing the number
of teams that need to be coordinated for
changes to happen.

We call this style “decentralized
integration”.

This is particularly helpful when
“moving to cloud”. Integration is
already aligned with the
systems of record before they
move to cloud, and the
deployment follows a more
cloud ready implementation.

Asynchronous integration
Request/response integration

Fully decoupling the microservices

Sy
st

em
s

of
 R

ec
or

d
En

ga
ge

m
en

t
Ap

pl
ic

at
io

n

Externally Exposed Services/APIs

Exposure Gateway (external)
Lightweight integration runtime

Lightweight language runtime

Public API
Enterprise API

API Gateway

M
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n

With only application centric integration,
microservices will need to do
increasingly more complex integration
to take on the compositional logic that
was often (perhaps incorrectly)
implemented in the centralized ESB.

Whilst this can be done in raw code, we
will quickly end up re-inventing
integration engines that already exist. It
would make sense to use modern
lightweight integration runtimes where
the task is obviously suited to them.

Typical examples would be
composition/aggregation, complex data
mapping, and ingestion of event
streams to populate microservices local
data stores.

It is interesting that the need for
completely decoupled data in
the microservices environments
is in fact driving a return to
some of the patterns that many
integration engines were
originally designed for.

Event centric integration is
seeing a significant return to
favor, leading to questions
around how best to manage the
proliferation of “events”

Asynchronous integration
Request/response integration

29

REST	{JSON} APIS

IBM Integration Bus - a lightweight integration runtime
FAST LIGHT DEPLOYMENT
Lightweight runtime stops/starts in seconds. Rich functionality retained. Encourages multiple runtimes each with minimal
flows. “Cattle not pets” approach. https://youtu.be/qQvT4kJoPTM

VIRTUALIZATION
VM and Docker fully supported. Images provided. Layered filesystem install. Dependency free, e.g. no MQ. Configuration
as files - “infrastructure as code”. https://youtu.be/ybGOiPZO3sY

STATELESS
Stateless runtime. Instances are independent of one another. Suited to blue/green deployment updates, A/B testing
etc. https://ibm.biz/IIBoncloud

DISTRIBUTED DEPLOY READY
Standardized logs for cross correlation. Out of the box ingestion into Bluemix monitoring. Distributed business
transaction monitoring. Deep global cache support. https://youtu.be/sCPrT2dHKSs

DEVOPS TOOLING SUPPORT
Continuous integration and deployment ready. Script based install, build, deploy, configuration. Automation via common
tools, e.g. Chef, Puppet, IBM UrbanCode Deploy. Test automation https://tinyurl.com/gsg5qpr

CLOUD FIRST
Available elastically scalable as as a service (IIB on Cloud), on IBM Bluemix and other leading PaaS vendors.

JSON/REST SUPPORT
Swagger support. REST based exposure. Downstream REST invocation. Graphical mapping of JSON data with or
without schema. https://youtu.be/C_6gPlrCHZQ

CURRENT CONNECTIVITY
Native connectivity to NoSQL databases such as MongoDb, Kafka messaging and SaaS (e.g.SalesForce)
https://youtu.be/7mCQ_cfGGtU https://youtu.be/Is1pphngUlM

IIB InterConnect sessions

30

Session Who Time

2110A What's New in IBM Integration Bus BT Monday 16:15 – 17:00

2141A IBM Integration Bus Futures and Strategy (Inner Circle only) BT Tuesday 11:30 – 12:15

2158A Technical Introduction to IBM Integration Bus GG Tuesday 13:30 – 14:15

2118A Developing Integrations for IBM Integration Bus on Cloud GG Tuesday 14:30 – 15:15

2144A IBM Integration Bus Customer Roundtable BT Tuesday 15:45 – 16:30

2121A Docker and IBM Integration Bus GG Wednesday 09:00 – 09:45

2151A Effective Administration of IBM Integration Bus SN Wednesday 10:15 – 11:00

2144B IBM Integration Bus Customer Roundtable BT Wednesday 16:15 – 17:00

2124A Operational and Business Monitoring with IBM Integration Bus SN Thursday 09:30 – 10:15

2111A IBM Integration Bus and REST APIs SN Thursday 10:30 – 11:15

2166 IBM Integration Bus Version 10 Hands-On Scheduled Lab GG+SN Monday 13:00 – 14:45

9402 IBM Integration Bus Version 10 Hands-On Open Lab None Any Open Lab Session

Common themes across the integration portfolio
enabling microservices principles

• Lightweight runtimes with a “12 factor app” approach
• Trivial, no/low cost repeatable developer install
• Devops toolchain support, scriptable “infrastructure as code”
• Support for containers, orchestration frameworks
• Cloud ready, and cloud vendor agnostic
• Standardised logging to enable cross component correlation
• New licensing models including hybrid and usage based
• “Digital connectivity” – e.g. support for REST, NoSQL, Kafka, SaaS etc.

31

Looking for
more
information?

Look out for related posts and videos on:

“Integration Design and Architecture”

blog posts on IBM Integration blog:
https://developer.ibm.com/integration/blog/tag/integration-design-and-architecture

and related videos in:
http://ibm.biz/IntegrationDesignAndArchitectureVideos

Paper on microservices in integration (~ 15 pages)
http://ibm.biz/MicroservicesVsSoa

Webinar based on above paper (55 mins)
http://ibm.biz/MicroservicesVsSoaFullWebinar

InterConnect
2017

33 3/20/17

34 3/20/17

Notices and disclaimers
Copyright © 2017 by International Business Machines Corporation
(IBM). No part of this document may be reproduced or transmitted in
any form without written permission from IBM.

U.S. Government Users Restricted Rights — use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM.

Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been
reviewed for accuracy as of the date of initial publication and could
include unintentional technical or typographical errors. IBM shall have
no responsibility to update this information. This document is
distributed “as is” without any warranty, either express or
implied. In no event shall IBM be liable for any damage arising
from the use of this information, including but not limited to, loss
of data, business interruption, loss of profit or loss of
opportunity. IBM products and services are warranted according to
the terms and conditions of the agreements under which they are
provided.

IBM products are manufactured from new parts or new and used parts.
In some cases, a product may not be new and may have been
previously installed. Regardless, our warranty terms apply.”

Any statements regarding IBM's future direction, intent or
product plans are subject to change or withdrawal without notice.

Performance data contained herein was generally obtained in a
controlled, isolated environments. Customer examples are presented
as illustrations of how those customers have used IBM products and

the results they may have achieved. Actual performance, cost, savings
or other results in other operating environments may vary.

References in this document to IBM products, programs, or services
does not imply that IBM intends to make such products, programs or
services available in all countries in which IBM operates or does
business.

Workshops, sessions and associated materials may have been
prepared by independent session speakers, and do not necessarily
reflect the
views of IBM. All materials and discussions are provided for
informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual participant
or their specific situation.

It is the customer’s responsibility to insure its own compliance
with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any relevant laws
and regulatory requirements that may affect the customer’s business
and any actions
the customer may need to take to comply with such laws. IBM does

not provide legal advice or represent or warrant that its services or
products will ensure that the customer is in compliance with any law.

35 3/20/17

Notices and disclaimers
continued
Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in
connection with this publication and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products. IBM does not warrant the
quality of any third-party products, or the ability of any such third-party
products to interoperate with IBM’s products. IBM expressly
disclaims all warranties, expressed or implied, including but not
limited to, the implied warranties of merchantability and fitness
for a particular, purpose.

The provision of the information contained herein is not intended to,
and does not, grant any right or license under any IBM patents,
copyrights, trademarks or other intellectual property right.

IBM, the IBM logo, ibm.com, Aspera®, Bluemix, Blueworks Live, CICS,
Clearcase, Cognos®, DOORS®, Emptoris®, Enterprise Document
Management System™, FASP®, FileNet®, Global Business Services®,
Global Technology Services®, IBM ExperienceOne™, IBM
SmartCloud®, IBM Social Business®, Information on Demand, ILOG,
Maximo®, MQIntegrator®, MQSeries®, Netcool®, OMEGAMON,
OpenPower, PureAnalytics™, PureApplication®, pureCluster™,
PureCoverage®, PureData®, PureExperience®, PureFlex®,
pureQuery®, pureScale®, PureSystems®, QRadar®, Rational®,
Rhapsody®, Smarter Commerce®, SoDA, SPSS, Sterling Commerce®,
StoredIQ, Tealeaf®, Tivoli® Trusteer®, Unica®, urban{code}®, Watson,
WebSphere®, Worklight®, X-Force® and System z® Z/OS, are
trademarks of International Business Machines Corporation, registered
in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at "Copyright and trademark
information" at: www.ibm.com/legal/copytrade.shtml.

